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Chapter 1

Introduction

This chapter contains all the most important information you need to begin
using the flat assembler. If you are experienced assembly language program-
mer, you should read at least this chapter before using this compiler.

1.1 Compiler overview

Flat assembler is a fast assembly language compiler for the x86 architecture
processors, which does multiple passes to optimize the size of generated ma-
chine code. It is self–compilable and versions for different operating systems
are provided. They are designed to be used from the system command line
and they should not differ in behavior.

This document describes also the IDE version designed for the Windows
system, which uses the graphical interface instead of console and has the
integrated editor. But from the view of compilation it has exactly the same
functionality as all the console versions, and so later parts (beginning from
1.2) of this document are common with other releases. The executable of
the IDE version is called fasmw.exe, while fasm.exe is the command line
version.

1.1.1 System requirements

All versions require the x86 architecture 32–bit processor (at least 80386),
although they can produce programs for the x86 architecture 16–bit proces-
sors, too. Windows console version requires any Win32 operating system,
while Windows GUI version requires the Win32 GUI system version 4.0 or
higher, so it should run on all systems compatible with Windows 95.
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6 CHAPTER 1. INTRODUCTION

The example source provided with this version require you have environ-
ment variable INCLUDE set to the path of the include directory, which is the
part of flat assembler package. If such variable already exists in your system
and contains paths used by some other program, it’s enough to add the new
path to it (the different paths should be separated with semicolons). If you
don’t want to define such variable in the system, or don’t know how to do it,
you can set it for the flat assembler IDE only by editing the fasmw.ini file
in its directory (this file is created by fasmw.exe when it’s executed, but you
can also create it by yourself). In this case you should add the Include value
into the Environment section. For example, when you have unpacked the
flat assembler files into the c:\fasmw directory, you should put the following
two lines into your c:\fasmw\fasmw.ini file:

[Environment]

Include = c:\fasmw\include

If you don’t define the INCLUDE environment variable properly, you will have
to manually provide the full path to the Win32 includes in every program
you want to compile.

1.1.2 Compiler usage

To start working with flat assembler, simply double click on the icon of
fasmw.exe file, or drag the icon of your source file onto it. You can also later
open new source files with the Open command from the File menu, or by
dragging the files into the editor window. You can have multiple source files
opened at one time, each one is represented by one tab button at the bottom
of the editor window. To select file for editing, click on the corresponding
tab with left mouse button. Compiler by default operates on the file you are
currently editing, but you can force it to always operate on some particular
file by clicking the appropriate tab with right mouse button and selecting the
Assign command. Only single file can be assigned to compiler at one time.

When your source file is ready, you can execute the compiler with Compile
command from the Run menu. When the compilation is successful, compiler
will display the summary of compilation process; otherwise it will display the
information about error that occurred. Compilation summary includes the
information of how many passes was done, how much time it took, and how
many bytes were written into destination file. It also contains a text field
called Display, in which will appear any messages from the display directives
in source (see 2.2.5). Error summary consists at least of the error message
and a text field Display, which has the same purpose as above. If error is
related to some specific line of source code, the summary contains also a text
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field Instruction, which contains the preprocessed form of instruction that
caused an error if the error occured after the preprocessor stage (otherwise
it’s empty) and the Source list, which shows location of all the source lines
related to this error, when you select a line from this list, it will be at the
same time selected in the editor window (if file which contains that line is
not loaded, it will be automatically added).

The Run command also executes the compiler, and in case of successful
compilation it runs the compiled program if only it is one of the formats that
can be run in Windows environment, otherwise you’ll get a message that
such type of file cannot be executed. If an error occurs, compiler displays
information about it in the same form as if the Compile command was used.

If the compiler runs out of memory, you can increase the memory allo-
cation in the Compiler setup dialog, which you can start from the Options
menu. You can specify there the amount of kilobytes that the compiler should
use, and also the priority of the compiler’s thread.

1.1.3 Editor options

In the Options menu resides also a list of editor options, which may be
turned on or off and affect the behavior of editor. This section describes
these options.

Secure selection – when you turn this option on, the selected block never
gets deleted when you start typing. When you do any text–changing op-
eration, the selection is cancelled, not affecting in any way the text that
was selected, and then the command is performed. When this option is off
and you start typing, the current selection is discarded, also Del key sim-
ply deletes the selected block (when secure selection is on you have to use
Ctrl+Del).

Automatic brackets – when you type any of the opening brackets, the
closing one is automatically put just after caret.

Automatic indents – when you press Enter to start a new line, the caret is
moved into the new line at the same position, where in the previous line the
first non-blank character is placed. If you are breaking the line, and there
were some non-blank characters after the caret when you pressed Enter, they
are moved into the new line at the position of indent, any blank characters
that were between the caret and them are ignored.

Smart tabulation – when you press Tab, it moves you to the position just
below the next sequence of non-blank characters in the line above starting
from the position just above where you were. If no such sequence is found in
line above, the standard tabulation size of 8 characters is used.
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Optimal fill on saving – with this option enabled, when the file is saved,
all blank areas are filled with the optimal combination of tabs and spaces to
get the smaller file size. If this option is off, the blank areas are saved as
filled with spaces (but the spaces at the ends of lines are not saved).

Revive dead keys – when this option is turned on, it disables inside the
editor the so–called dead keys (keys that don’t immediately generate the
character, but wait for a next key to decide what character to put – usually
you enter the character of a dead key by pressing a space key after it). It may
be useful if key for entering some of the characters that you need to enter
often into assembly source is a dead key and you don’t need this functionality
for writing programs.

1.1.4 Executing compiler from command line

To perform compilation from the command line you need to execute the
fasm.exe executable, providing two parameters – first should be name of
source file, second should be name of destination file. If no second param-
eter is given, the name for output file will be guessed automatically. After
displaying short information about the program name and version, compiler
will read the data from source file and compile it. When the compilation
is successful, compiler will write the generated code to the destination file
and display the summary of compilation process; otherwise it will display
the information about error that occurred.

The source file should be a text file, and can be created in any text editor.
Line breaks are accepted in both DOS and Unix standards, tabulators are
treated as spaces.

In the command line you can also include -m option followed by a num-
ber, which specifies how many kilobytes of memory flat assembler should
maximally use. In case of DOS version this options limits only the usage of
extended memory. The -p option followed by a number can be used to spec-
ify the limit for number of passes the assembler performs. If code cannot be
generated within specified amount of passes, the assembly will be terminated
with an error message. The maximum value of this setting is 65536, while
the default limit, used when no such option is included in command line, is
100. It is also possible to limit the number of passes the assembler performs,
with the -p option followed by a number specifying the maximum number
of passes.

There are no command line options that would affect the output of com-
piler, flat assembler requires only the source code to include the information
it really needs. For example, to specify output format you specify it by using
the format directive at the beginning of source.
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1.1.5 Command line compiler messages

As it is stated above, after the successful compilation, the compiler displays
the compilation summary. It includes the information of how many passes
was done, how much time it took, and how many bytes were written into the
destination file. The following is an example of the compilation summary:

flat assembler version 1.66

38 passes, 5.3 seconds, 77824 bytes.

In case of error during the compilation process, the program will display an
error message. For example, when compiler can’t find the input file, it will
display the following message:

flat assembler version 1.66

error: source file not found.

If the error is connected with a specific part of source code, the source line
that caused the error will be also displayed. Also placement of this line in
the source is given to help you finding this error, for example:

flat assembler version 1.66

example.asm [3]:

mob ax,1

error: illegal instruction.

It means that in the third line of the example.asm file compiler has encoun-
tered an unrecognized instruction. When the line that caused error contains a
macroinstruction, also the line in macroinstruction definition that generated
the erroneous instruction is displayed:

flat assembler version 1.66

example.asm [6]:

stoschar 7

example.asm [3] stoschar [1]:

mob al,char

error: illegal instruction.

It means that the macroinstruction in the sixth line of the example.asm file
generated an unrecognized instruction with the first line of its definition.



10 CHAPTER 1. INTRODUCTION

1.1.6 Output formats

By default, when there is no format directive in source file, flat assembler
simply puts generated instruction codes into output, creating this way flat
binary file. By default it generates 16–bit code, but you can always turn it
into the 16–bit or 32–bit mode by using use16 or use32 directive. Some of the
output formats switch into 32–bit mode, when selected – more information
about formats which you can choose can be found in 2.4.

The extension of destination file is chosen automatically by compiler,
depending on the selected output format.

All output code is always in the order in which it was entered into the
source file.

1.2 Assembly syntax

The information provided below is intended mainly for the assembler pro-
grammers that have been using some other assembly compilers before. If you
are beginner, you should look for the assembly programming tutorials.

Flat assembler by default uses the Intel syntax for the assembly in-
structions, although you can customize it using the preprocessor capabilities
(macroinstructions and symbolic constants). It also has its own set of the
directives – the instructions for compiler.

All symbols defined inside the sources are case–sensitive.

Operator Bits Bytes

byte 8 1
word 16 2
dword 32 4
fword 48 6
pword 48 6
qword 64 8
tbyte 80 10
tword 80 10
dqword 128 16

Table 1.1: Size operators.
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Type Bits

8 al cl dl bl ah ch dh bh

General 16 ax cx dx bx sp bp si di

32 eax ecx edx ebx esp ebp esi edi

Segment 16 es cs ss ds fs gs

Control 32 cr0 cr2 cr3 cr4

Debug 32 dr0 dr1 dr2 dr3 dr6 dr7

FPU 80 st0 st1 st2 st3 st4 st5 st6 st7

MMX 64 mm0 mm1 mm2 mm3 mm4 mm5 mm6 mm7

SSE 128 xmm0 xmm1 xmm2 xmm3 xmm4 xmm5 xmm6 xmm7

Table 1.2: Registers.

1.2.1 Instruction syntax

Instructions in assembly language are separated by line breaks, and one in-
struction is expected to fill the one line of text. If a line contains a semicolon,
except for the semicolons inside the quoted strings, the rest of this line is the
comment and compiler ignores it. If a line ends with \ character (eventually
the semicolon and comment may follow it), the next line is attached at this
point.

Each line in source is the sequence of items, which may be one of the three
types. One type are the symbol characters, which are the special characters
that are individual items even when are not spaced from the other ones.
Any of the +-*/=<>()[]{}:,|&~#‘ is the symbol character. The sequence
of other characters, separated from other items with either blank spaces or
symbol characters, is a symbol. If the first character of symbol is either a
single or double quote, it integrates the any sequence of characters following
it, even the special ones, into a quoted string, which should end with the
same character, with which it began (the single or double quote) – however
if there are two such characters in a row (without any other character between
them), they are integrated into quoted string as just one of them and the
quoted string continues then. The symbols other than symbol characters and
quoted strings can be used as names, so are also called the name symbols.

Every instruction consists of the mnemonic and the various number of
operands, separated with commas. The operand can be register, immediate
value or a data addressed in memory, it can also be preceded by size operator
to define or override its size (table 1.1). Names of available registers you can
find in table 1.2, their sizes cannot be overridden. Immediate value can be
specified by any numerical expression.
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When operand is a data in memory, the address of that data (also any nu-
merical expression, but it may contain registers) should be enclosed in square
brackets or preceded by ptr operator. For example instruction mov eax,3

will put the immediate value 3 into the eax register, instruction mov eax,[7]

will put the 32–bit value from the address 7 into eax and the instruction
mov byte [7],3 will put the immediate value 3 into the byte at address 7,
it can also be written as mov byte ptr 7,3. To specify which segment reg-
ister should be used for addressing, segment register name followed with a
colon should be put just before the address value (inside the square brackets
or after the ptr operator).

1.2.2 Data definitions

To define data or reserve a space for it, use one of the directives listed in
table 1.3. The data definition directive should be followed by one or more of
numerical expressions, separated with commas. These expressions define the
values for data cells of size depending on which directive is used. For example
db 1,2,3 will define the three bytes of values 1, 2 and 3 respectively.

The db and du directives also accept the quoted string values of any
length, which will be converted into chain of bytes when db is used and into
chain of words with zeroed high byte when du is used. For example db ’abc’

will define the three bytes of values 61, 62 and 63.
The dp directive and its synonym df accept the values consisting of two

numerical expressions separated with colon, the first value will become the
high word and the second value will become the low double word of the far
pointer value. Also dd accepts such pointers consisting of two word values
separated with colon, and dt accepts the word and quad word value sepa-
rated with colon, the quad word is stored first. The dt directive with single
expression as parameter accepts only floating point values and creates data
in FPU double extended precision format.

Any of the above directive allows the usage of special dup operator to
make multiple copies of given values. The count of duplicates should precede
this operator and the value to duplicate should follow – it can even be the
chain of values separated with commas, but such set of values needs to be
enclosed with parenthesis, like db 5 dup (1,2), which defines five copies of
the given two byte sequence.

The file is a special directive and its syntax is different. This directive
includes a chain of bytes from file and it should be followed by the quoted
file name, then optionally numerical expression specifying offset in file pre-
ceded by the colon, then – also optionally – comma and numerical expression
specifying count of bytes to include (if no count is specified, all data up to
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the end of file is included). For example file ’data.bin’ will include the
whole file as binary data and file ’data.bin’:10h,4 will include only four
bytes starting at offset 10h.

Size Define Reserve
(bytes) data data

1 db rb

file

2 dw rw

du

4 dd rd

6 dp rp

df rf

8 dq rq

10 dt rt

Table 1.3: Data directives.

The data reservation directive should be followed by only one numerical
expression, and this value defines how many cells of the specified size should
be reserved. All data definition directives also accept the ? value, which
means that this cell should not be initialized to any value and the effect
is the same as by using the data reservation directive. The uninitialized
data may not be included in the output file, so its values should be always
considered unknown.

1.2.3 Constants and labels

In the numerical expressions you can also use constants or labels instead
of numbers. To define the constant or label you should use the specific
directives. Each label can be defined only once and it is accessible from the
any place of source (even before it was defined). Constant can be redefined
many times, but in this case it is accessible only after it was defined, and
is always equal to the value from last definition before the place where it’s
used. When a constant is defined only once in source, it is – like the label –
accessible from anywhere.

The definition of constant consists of name of the constant followed by the
= character and numerical expression, which after calculation will become the
value of constant. This value is always calculated at the time the constant is
defined. For example you can define count constant by using the directive
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count = 17, and then use it in the assembly instructions, like mov cx,count

– which will become mov cx,17 during the compilation process.
There are different ways to define labels. The simplest is to follow the

name of label by the colon, this directive can even be followed by the other
instruction in the same line. It defines the label whose value is equal to
offset of the point where it’s defined. This method is usually used to label
the places in code. The other way is to follow the name of label (without a
colon) by some data directive. It defines the label with value equal to offset
of the beginning of defined data, and remembered as a label for data with
cell size as specified for that data directive in table 1.3.

The label can be treated as constant of value equal to offset of labeled
code or data. For example when you define data using the labeled directive
char db 224, to put the offset of this data into bx register you should use
mov bx,char instruction, and to put the value of byte addressed by char

label to dl register, you should use mov dl,[char] (or mov dl,ptr char).
But when you try to assemble mov ax,[char], it will cause an error, because
fasm compares the sizes of operands, which should be equal. You can force
assembling that instruction by using size override: mov ax,word [char],
but remember that this instruction will read the two bytes beginning at
char address, while it was defined as a one byte.

The last and the most flexible way to define labels is to use label direc-
tive. This directive should be followed by the name of label, then optionally
size operator and then – also optionally at operator and the numerical ex-
pression defining the address at which this label should be defined. For
example label wchar word at char will define a new label for the 16–bit
data at the address of char. Now the instruction mov ax,[wchar] will be af-
ter compilation the same as mov ax,word [char]. If no address is specified,
label directive defines the label at current offset. Thus mov [wchar],57568

will copy two bytes while mov [char],224 will copy one byte to the same
address.

The label whose name begins with dot is treated as local label, and its
name is attached to the name of last global label (with name beginning with
anything but dot) to make the full name of this label. So you can use the
short name (beginning with dot) of this label anywhere before the next global
label is defined, and in the other places you have to use the full name. Label
beginning with two dots are the exception – they are like global, but they
don’t become the new prefix for local labels.

The @@ name means anonymous label, you can have defined many of them
in the source. Symbol @b (or equivalent @r) references the nearest preced-
ing anonymous label, symbol @f references the nearest following anonymous
label. These special symbol are case–insensitive.
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1.2.4 Numerical expressions

In the above examples all the numerical expressions were the simple numbers,
constants or labels. But they can be more complex, by using the arithmetical
or logical operators for calculations at compile time. All these operators
with their priority values are listed in table 1.4. The operations with higher
priority value will be calculated first, you can of course change this behavior
by putting some parts of expression into parenthesis. The +, -, * and / are
standard arithmetical operations, mod calculates the remainder from division.
The and, or, xor, shl, shr and not perform the same logical operations as
assembly instructions of those names. The rva performs the conversion of
an address into the relocatable offset and is specific to some of the output
formats (see 2.4).

Priority Operators

0 +

-

1 *

/

2 mod

3 and

or

xor

4 shl

shr

5 not

6 rva

Table 1.4: Arithmetical and logical operators by priority.

The numbers in the expression are by default treated as a decimal, binary
numbers should have the b letter attached at the end, octal number end with
o letter, hexadecimal numbers should begin with 0x characters (like in C
language) or with the $ character (like in Pascal language) or they should
end with h letter. Also quoted string, when encountered in expression, will be
converted into number – the first character will become the least significant
byte of number.

The numerical expression used as an address value can also contain any
of general registers used for addressing, they can be added and multiplied by
appropriate values, as it is allowed for x86 architecture instructions.
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There are also some special symbols that can be used inside the numerical
expression. First is $, which is always equal to the value of current offset,
while $$ is equal to base address of current addressing space. The other one
is %, which is the number of current repeat in parts of code that are repeated
using some special directives (see 2.2). There’s also %t symbol, which is
always equal to the current time stamp.

Any numerical expression can also consist of single floating point value
(flat assembler does not allow any floating point operations at compilation
time) in the scientific notation, they can end with the f letter to be recog-
nized, otherwise they should contain at least one of the . or E characters. So
1.0, 1E0 and 1f define the same floating point value, while simple 1 defines
an integer value.

1.2.5 Jumps and calls

The operand of any jump or call instruction can be preceded not only by
the size operator, but also by one of the operators specifying type of the
jump: short, near of far. For example, when assembler is in 16–bit mode,
instruction jmp dword [0] will become the far jump and when assembler is
in 32–bit mode, it will become the near jump. To force this instruction to
be treated differently, use the jmp near dword [0] or jmp far dword [0]

form.
When operand of near jump is the immediate value, assembler will gener-

ate the shortest variant of this jump instruction if possible (but won’t create
32–bit instruction in 16–bit mode nor 16–bit instruction in 32–bit mode, un-
less there is a size operator stating it). By specifying the jump type you can
force it to always generate long variant (for example jmp near 0) or to al-
ways generate short variant and terminate with an error when it’s impossible
(for example jmp short 0).

1.2.6 Size settings

When instruction uses some memory addressing, by default the smallest form
of instruction is generated by using the short displacement if only address
value fits in the range. This can be overridden using the word or dword oper-
ator before the address inside the square brackets (or after the ptr operator),
which forces the long displacement of appropriate size to be made. In case
when address is not relative to any registers, those operators allow also to
choose the appropriate mode of absolute addressing.

Instructions adc, add, and, cmp, or, sbb, sub and xor with first operand
being 16–bit or 32–bit are by default generated in shortened 8–bit form when
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the second operand is immediate value fitting in the range for signed 8-bit
values. It also can be overridden by putting the word or dword operator
before the immediate value. The similar rules applies to the imul instruction
with the last operand being immediate value.

Immediate value as an operand for push instruction without a size oper-
ator is by default treated as a word value if assembler is in 16–bit mode and
as a double word value if assembler is in 32–bit mode, shorter 8–bit form
of this instruction is used if possible, word or dword size operator forces the
push instruction to be generated in longer form for specified size. pushw and
pushd mnemonics force assembler to generate 16-bit or 32-bit code without
forcing it to use the longer form of instruction.
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Chapter 2

Instruction set

This chapter provides the detailed information about the instructions and
directives supported by flat assembler. Directives for defining labels were
already discussed in 1.2.3, all other directives will be described later in this
chapter.

2.1 The x86 architecture instructions

In this section you can find both the information about the syntax and pur-
pose the assembly language instructions. If you need more technical infor-
mation, look for the Intel Architecture Software Developer’s Manual.

Assembly instructions consist of the mnemonic (instruction’s name) and
from zero to three operands. If there are two or more operands, usually first
is the destination operand and second is the source operand. Each operand
can be register, memory or immediate value (see 1.2 for details about syntax
of operands). After the description of each instruction there are examples of
different combinations of operands, if the instruction has any.

Some instructions act as prefixes and can be followed by other instruction
in the same line, and there can be more than one prefix in a line. Each name
of the segment register is also a mnemonic of instruction prefix, altough it is
recommended to use segment overrides inside the square brackets instead of
these prefixes.

2.1.1 Data movement instructions

mov transfers a byte, word or double word from the source operand to the
destination operand. It can transfer data between general registers, from
the general register to memory, or from memory to general register, but it
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cannot move from memory to memory. It can also transfer an immediate
value to general register or memory, segment register to general register or
memory, general register or memory to segment register, control or debug
register to general register and general register to control or debug register.
The mov can be assembled only if the size of source operand and size of
destination operand are the same. Below are the examples for each of the
allowed combinations:

mov bx,ax ; general register to general register

mov [char],al ; general register to memory

mov bl,[char] ; memory to general register

mov dl,32 ; immediate value to general register

mov [char],32 ; immediate value to memory

mov ax,ds ; segment register to general register

mov [bx],ds ; segment register to memory

mov ds,ax ; general register to segment register

mov ds,[bx] ; memory to segment register

mov eax,cr0 ; control register to general register

mov cr3,ebx ; general register to control register

xchg swaps the contents of two operands. It can swap two byte operands,
two word operands or two double word operands. Order of operands is not
important. The operands may be two general registers, or general register
with memory. For example:

xchg ax,bx ; swap two general registers

xchg al,[char] ; swap register with memory

push decrements the stack frame pointer (esp register), then transfers the
operand to the top of stack indicated by esp. The operand can be memory,
general register, segment register or immediate value of word or double word
size. If operand is an immediate value and no size is specified, it is by
default treated as a word value if assembler is in 16–bit mode and as a double
word value if assembler is in 32–bit mode. pushw and pushd mnemonics are
variants of this instruction that store the values of word or double word size
respectively. If more operands follow in the same line (separated only with
spaces, not commas), compiler will assemble chain of the push instructions
with these operands. The examples are with single operands:

push ax ; store general register

push es ; store segment register

pushw [bx] ; store memory

push 1000h ; store immediate value
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pusha saves the contents of the eight general register on the stack. This
instruction has no operands. There are two version of this instruction, one
16–bit and one 32–bit, assembler automatically generates the right version for
current mode, but it can be overridden by using pushaw or pushad mnemonic
to always get the 16–bit or 32–bit version. The 16–bit version of this instruc-
tion pushes general registers on the stack in the following order: ax, cx, dx,
bx, the initial value of sp before ax was pushed, bp, si and di. The 32–bit
version pushes equivalent 32–bit general registers in the same order.

pop transfers the word or double word at the current top of stack to the
destination operand, and then increments esp to point to the new top of
stack. The operand can be memory, general register or segment register.
popw and popd mnemonics are variants of this instruction for restoring the
values of word or double word size respectively. If more operands separated
with spaces follow in the same line, compiler will assemble chain of the pop

instructions with these operands.

pop bx ; restore general register

pop ds ; restore segment register

popw [si] ; restore memory

popa restores the registers saved on the stack by pusha instruction, except
for the saved value of sp (or esp), which is ignored. This instruction has no
operands. To force assembling 16–bit or 32–bit version of this instruction
use popaw or popad mnemonic.

2.1.2 Type conversion instructions

The type conversion instructions convert bytes into words, words into double
words, and double words into quad words. These conversions can be done
using the sign extension or zero extension. The sign extension fills the extra
bits of the larger item with the value of the sign bit of the smaller item, the
zero extension simply fills them with zeros.

cwd and cdq double the size of value ax or eax register respectively and
store the extra bits into the dx or edx register. The conversion is done using
the sign extension. These instructions have no operands.

cbw extends the sign of the byte in al throughout ax, and cwde extends
the sign of the word in ax throughout eax. These instructions also have no
operands.

movsx converts a byte to word or double word and a word to double word
using the sign extension. movzx does the same, but it uses the zero extension.
The source operand can be general register or memory, while the destination
operand must be a general register. For example:
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movsx ax,al ; byte register to word register

movsx edx,dl ; byte register to double word register

movsx eax,ax ; word register to double word register

movsx ax,byte [bx] ; byte memory to word register

movsx edx,byte [bx] ; byte memory to double word register

movsx eax,word [bx] ; word memory to double word register

2.1.3 Binary arithmetic instructions

add replaces the destination operand with the sum of the source and desti-
nation operands and sets CF if overflow has occurred. The operands may
be bytes, words or double words. The destination operand can be general
register or memory, the source operand can be general register or immediate
value, it can also be memory if the destination operand is register.

add ax,bx ; add register to register

add ax,[si] ; add memory to register

add [di],al ; add register to memory

add al,48 ; add immediate value to register

add [char],48 ; add immediate value to memory

adc sums the operands, adds one if CF is set, and replaces the destination
operand with the result. Rules for the operands are the same as for the add

instruction. An add followed by multiple adc instructions can be used to add
numbers longer than 32 bits.

inc adds one to the operand, it does not affect CF. The operand can be
a general register or memory, and the size of the operand can be byte, word
or double word.

inc ax ; increment register by one

inc byte [bx] ; increment memory by one

sub subtracts the source operand from the destination operand and re-
places the destination operand with the result. If a borrow is required, the
CF is set. Rules for the operands are the same as for the add instruction.

sbb subtracts the source operand from the destination operand, subtracts
one if CF is set, and stores the result to the destination operand. Rules for
the operands are the same as for the add instruction. A sub followed by
multiple sbb instructions may be used to subtract numbers longer than 32
bits.

dec subtracts one from the operand, it does not affect CF. Rules for the
operand are the same as for the inc instruction.
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cmp subtracts the source operand from the destination operand. It up-
dates the flags as the sub instruction, but does not alter the source and
destination operands. Rules for the operands are the same as for the sub

instruction.
neg subtracts a signed integer operand from zero. The effect of this

instructon is to reverse the sign of the operand from positive to negative or
from negative to positive. Rules for the operand are the same as for the inc

instruction.
xadd exchanges the destination operand with the source operand, then

loads the sum of the two values into the destination operand. Rules for the
operands are the same as for the add instruction.

All the above binary arithmetic instructions update SF, ZF, PF and OF
flags. SF is always set to the same value as the result’s sign bit, ZF is set
when all the bits of result are zero, PF is set when low order eight bits of
result contain an even number of set bits, OF is set if result is too large for
a positive number or too small for a negative number (excluding sign bit) to
fit in destination operand.

mul performs an unsigned multiplication of the operand and the accumu-
lator. If the operand is a byte, the processor multiplies it by the contents of
al and returns the 16–bit result to ah and al. If the operand is a word, the
processor multiplies it by the contents of ax and returns the 32–bit result to
dx and ax. If the operand is a double word, the processor multiplies it by
the contents of eax and returns the 64–bit result in edx and eax. mul sets
CF and OF when the upper half of the result is nonzero, otherwise they are
cleared. Rules for the operand are the same as for the inc instruction.

imul performs a signed multiplication operation. This instruction has
three variations. First has one operand and behaves in the same way as the
mul instruction. Second has two operands, in this case destination operand
is multiplied by the source operand and the result replaces the destination
operand. Destination operand must be a general register, it can be word or
double word, source operand can be general register, memory or immediate
value. Third form has three operands, the destination operand must be a
general register, word or double word in size, source operand can be general
register or memory, and third operand must be an immediate value. The
source operand is multiplied by the immediate value and the result is stored
in the destination register. All the three forms calculate the product to twice
the size of operands and set CF and OF when the upper half of the result
is nonzero, but second and third form truncate the product to the size of
operands. So second and third forms can be also used for unsigned operands
because, whether the operands are signed or unsigned, the lower half of the
product is the same. Below are the examples for all three forms:
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imul bl ; accumulator by register

imul word [si] ; accumulator by memory

imul bx,cx ; register by register

imul bx,[si] ; register by memory

imul bx,10 ; register by immediate value

imul ax,bx,10 ; register by immediate value to register

imul ax,[si],10 ; memory by immediate value to register

div performs an unsigned division of the accumulator by the operand.
The dividend (the accumulator) is twice the size of the divisor (the operand),
the quotient and remainder have the same size as the divisor. If divisor is
byte, the dividend is taken from ax register, the quotient is stored in al and
the remainder is stored in ah. If divisor is word, the upper half of dividend
is taken from dx, the lower half of dividend is taken from ax, the quotient is
stored in ax and the remainder is stored in dx. If divisor is double word, the
upper half of dividend is taken from edx, the lower half of dividend is taken
from eax, the quotient is stored in eax and the remainder is stored in edx.
Rules for the operand are the same as for the mul instruction.

idiv performs a signed division of the accumulator by the operand. It
uses the same registers as the div instruction, and the rules for the operand
are the same.

2.1.4 Decimal arithmetic instructions

Decimal arithmetic is performed by combining the binary arithmetic instruc-
tions (already described in the prior section) with the decimal arithmetic
instructions. The decimal arithmetic instructions are used to adjust the re-
sults of a previous binary arithmetic operation to produce a valid packed
or unpacked decimal result, or to adjust the inputs to a subsequent binary
arithmetic operation so the operation will produce a valid packed or unpacked
decimal result.

daa adjusts the result of adding two valid packed decimal operands in al.
daa must always follow the addition of two pairs of packed decimal numbers
(one digit in each half–byte) to obtain a pair of valid packed decimal digits
as results. The carry flag is set if carry was needed. This instruction has no
operands.

das adjusts the result of subtracting two valid packed decimal operands
in al. das must always follow the subtraction of one pair of packed decimal
numbers (one digit in each half–byte) from another to obtain a pair of valid
packed decimal digits as results. The carry flag is set if a borrow was needed.
This instruction has no operands.
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aaa changes the contents of register al to a valid unpacked decimal num-
ber, and zeroes the top four bits. aaa must always follow the addition of two
unpacked decimal operands in al. The carry flag is set and ah is incremented
if a carry is necessary. This instruction has no operands.

aas changes the contents of register al to a valid unpacked decimal num-
ber, and zeroes the top four bits. aas must always follow the subtraction of
one unpacked decimal operand from another in al. The carry flag is set and
ah decremented if a borrow is necessary. This instruction has no operands.

aam corrects the result of a multiplication of two valid unpacked decimal
numbers. aam must always follow the multiplication of two decimal numbers
to produce a valid decimal result. The high order digit is left in ah, the
low order digit in al. The generalized version of this instruction allows
adjustment of the contents of the ax to create two unpacked digits of any
number base. The standard version of this instruction has no operands, the
generalized version has one operand – an immediate value specifying the
number base for the created digits.

aad modifies the numerator in ah and ah to prepare for the division of
two valid unpacked decimal operands so that the quotient produced by the
division will be a valid unpacked decimal number. ah should contain the high
order digit and al the low order digit. This instruction adjusts the value and
places the result in al, while ah will contain zero. The generalized version
of this instruction allows adjustment of two unpacked digits of any number
base. Rules for the operand are the same as for the aam instruction.

2.1.5 Logical instructions

not inverts the bits in the specified operand to form a one’s complement of
the operand. It has no effect on the flags. Rules for the operand are the
same as for the inc instruction.

and, or and xor instructions perform the standard logical operations.
They update the SF, ZF and PF flags. Rules for the operands are the same
as for the add instruction.

bt, bts, btr and btc instructions operate on a single bit which can be
in memory or in a general register. The location of the bit is specified as
an offset from the low order end of the operand. The value of the offset is
the taken from the second operand, it either may be an immediate byte or a
general register. These instructions first assign the value of the selected bit
to CF. bt instruction does nothing more, bts sets the selected bit to 1, btr
resets the selected bit to 0, btc changes the bit to its complement. The first
operand can be word or double word.
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bt ax,15 ; test bit in register

bts word [bx],15 ; test and set bit in memory

btr ax,cx ; test and reset bit in register

btc word [bx],cx ; test and complement bit in memory

bsf and bsr instructions scan a word or double word for first set bit and
store the index of this bit into destination operand, which must be general
register. The bit string being scanned is specified by source operand, it may
be either general register or memory. The ZF flag is set if the entire string
is zero (no set bits are found); otherwise it is cleared. If no set bit is found,
the value of the destination register is undefined. bsf from low order to high
order (starting from bit index zero). bsr scans from high order to low order
(starting from bit index 15 of a word or index 31 of a double word).

bsf ax,bx ; scan register forward

bsr ax,[si] ; scan memory reverse

shl shifts the destination operand left by the number of bits specified in
the second operand. The destination operand can be byte, word, or double
word general register or memory. The second operand can be an immediate
value or the cl register. The processor shifts zeros in from the right (low
order) side of the operand as bits exit from the left side. The last bit that
exited is stored in CF. sal is a synonym for shl.

shl al,1 ; shift register left by one bit

shl byte [bx],1 ; shift memory left by one bit

shl ax,cl ; shift register left by count from cl

shl word [bx],cl ; shift memory left by count from cl

shr and sar shift the destination operand right by the number of bits
specified in the second operand. Rules for operands are the same as for
the shl instruction. shr shifts zeros in from the left side of the operand as
bits exit from the right side. The last bit that exited is stored in CF. sar
preserves the sign of the operand by shifting in zeros on the left side if the
value is positive or by shifting in ones if the value is negative.

shld shifts bits of the destination operand to the left by the number of
bits specified in third operand, while shifting high order bits from the source
operand into the destination operand on the right. The source operand
remains unmodified. The destination operand can be a word or double word
general register or memory, the source operand must be a general register,
third operand can be an immediate value or the cl register.

shld ax,bx,1 ; shift register left by one bit
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shld [di],bx,1 ; shift memory left by one bit

shld ax,bx,cl ; shift register left by count from cl

shld [di],bx,cl ; shift memory left by count from cl

shrd shifts bits of the destination operand to the right, while shifting low
order bits from the source operand into the destination operand on the left.
The source operand remains unmodified. Rules for operands are the same as
for the shld instruction.

rol and rcl rotate the byte, word or double word destination operand
left by the number of bits specified in the second operand. For each rotation
specified, the high order bit that exits from the left of the operand returns at
the right to become the new low order bit. rcl additionally puts in CF each
high order bit that exits from the left side of the operand before it returns
to the operand as the low order bit on the next rotation cycle. Rules for
operands are the same as for the shl instruction.

ror and rcr rotate the byte, word or double word destination operand
right by the number of bits specified in the second operand. For each rotation
specified, the low order bit that exits from the right of the operand returns at
the left to become the new high order bit. rcr additionally puts in CF each
low order bit that exits from the right side of the operand before it returns
to the operand as the high order bit on the next rotation cycle. Rules for
operands are the same as for the shl instruction.

test performs the same action as the and instruction, but it does not
alter the destination operand, only updates flags. Rules for the operands are
the same as for the and instruction.

bswap reverses the byte order of a 32–bit general register: bits 0 through 7
are swapped with bits 24 through 31, and bits 8 through 15 are swapped with
bits 16 through 23. This instruction is provided for converting little–endian
values to big–endian format and vice versa.

bswap edx ; swap bytes in register

2.1.6 Control transfer instructions

jmp unconditionally transfers control to the target location. The destination
address can be specified directly within the instruction or indirectly through
a register or memory, the acceptable size of this address depends on whether
the jump is near or far (it can be specified by preceding the operand with near

or far operator) and whether the instruction is 16–bit or 32–bit. Operand
for near jump should be word size for 16–bit instruction or the dword size
for 32–bit instruction. Operand for far jump should be dword size for 16–bit
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instruction or pword size for 32-bit instruction. A direct jmp instruction in-
cludes the destination address as part of the instruction (and can be preceded
by short, near or far operator), the operand specifying address should be
the numerical expression for near or short jump, or two numerical expressions
separated with colon for far jump, the first specifies selector of segment, the
second is the offset within segment. The pword operator can be used to force
the 32–bit far call, and dword to force the 16-bit far call. An indirect jmp

instruction obtains the destination address indirectly through a register or a
pointer variable, the operand should be general register or memory. See also
1.2.5 for some more details.

jmp 100h ; direct near jump

jmp 0FFFFh:0 ; direct far jump

jmp ax ; indirect near jump

jmp pword [ebx] ; indirect far jump

call transfers control to the procedure, saving on the stack the address of
the instruction following the call for later use by a ret (return) instruction.
Rules for the operands are the same as for the jmp instruction, but the call

has no short variant of direct instruction and thus it not optimized.
ret, retn and retf instructions terminate the execution of a procedure

and transfers control back to the program that originally invoked the proce-
dure using the address that was stored on the stack by the call instruction.
ret is the equivalent for retn, which returns from the procedure that was
executed using the near call, while retf returns from the procedure that
was executed using the far call. These instructions default to the size of
address appropriate for the current code setting, but the size of address can
be forced to 16–bit by using the retw, retnw and retfw mnemonics, and to
32–bit by using the retd, retnd and retfd mnemonics. All these instruc-
tions may optionally specify an immediate operand, by adding this constant
to the stack pointer, they effectively remove any arguments that the calling
program pushed on the stack before the execution of the call instruction.

iret returns control to an interrupted procedure. It differs from ret in
that it also pops the flags from the stack into the flags register. The flags
are stored on the stack by the interrupt mechanism. It defaults to the size of
return address appropriate for the current code setting, but it can be forced
to use 16–bit or 32–bit address by using the iretw or iretd mnemonic.

The conditional transfer instructions are jumps that may or may not
transfer control, depending on the state of the CPU flags when the instruc-
tion executes. The mnemonics for conditional jumps may be obtained by
attaching the condition mnemonic (see table 2.1) to the j mnemonic, for
example jc instruction will transfer the control when the CF flag is set.
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The conditional jumps can be short or near, and direct only, and can be
optimized (see 1.2.5), the operand should be an immediate value specifying
target address.

The loop instructions are conditional jumps that use a value placed in
cx (or ecx) to specify the number of repetitions of a software loop. All
loop instructions automatically decrement cx (or ecx) and terminate the
loop (don’t transfer the control) when cx (or ecx) is zero. It uses cx or ecx
whether the current code setting is 16–bit or 32–bit, but it can be forced to
use cx with the loopw mnemonic or to use ecx with the loopd mnemonic.
loope and loopz are the synonyms for the same instruction, which acts as the
standard loop, but also terminates the loop when ZF flag is set. loopew and
loopzw mnemonics force them to use cx register while looped and loopzd

force them to use ecx register. loopne and loopnz are the synonyms for
the same instructions, which acts as the standard loop, but also terminate
the loop when ZF flag is not set. loopnew and loopnzw mnemonics force
them to use cx register while loopned and loopnzd force them to use ecx

register. Every loop instruction needs an operand being an immediate value
specifying target address, it can be only short jump (in the range of 128
bytes back and 127 bytes forward from the address of instruction following
the loop instruction).

jcxz branches to the label specified in the instruction if it finds a value
of zero in cx, jecxz does the same, but checks the value of ecx instead of
cx. Rules for the operands are the same as for the loop instruction.

int activates the interrupt service routine that corresponds to the number
specified as an operand to the instruction, the number should be in range from
0 to 255. The interrupt service routine terminates with an iret instruction
that returns control to the instruction that follows int. int3 mnemonic
codes the short (one byte) trap that invokes the interrupt 3. into instruction
invokes the interrupt 4 if the OF flag is set.

bound verifies that the signed value contained in the specified register lies
within specified limits. An interrupt 5 occurs if the value contained in the
register is less than the lower bound or greater than the upper bound. It
needs two operands, the first operand specifies the register being tested, the
second operand should be memory address for the two signed limit values.
The operands can be word or dword in size.

bound ax,[bx] ; check word for bounds

bound eax,[esi] ; check double word for bounds
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Mnemonic Condition tested Description

o OF = 1 overflow
no OF = 0 not overflow
c carry
b CF = 1 below

nae not above nor equal
nc not carry
ae CF = 0 above or equal
nb not below
e ZF = 1 equal
z zero
ne ZF = 0 not equal
nz not zero
be CF or ZF = 1 below or equal
na not above
a CF or ZF = 0 above

nbe not below nor equal
s SF = 1 sign
ns SF = 0 not sign
p PF = 1 parity
pe parity even
np PF = 0 not parity
po parity odd
l SF xor OF = 1 less

nge not greater nor equal
ge SF xor OF = 0 greater or equal
nl not less
le (SF xor OF) or ZF = 1 less or equal
ng not greater
g (SF xor OF) or ZF = 0 greater

nle not less nor equal

Table 2.1: Conditions.



2.1. THE X86 ARCHITECTURE INSTRUCTIONS 31

2.1.7 I/O instructions

in transfers a byte, word, or double word from an input port to al, ax, or
eax. I/O ports can be addressed either directly, with the immediate byte
value coded in instruction, or indirectly via the dx register. The destination
operand should be al, ax, or eax register. The source operand should be an
immediate value in range from 0 to 255, or dx register.

in al,20h ; input byte from port 20h

in ax,dx ; input word from port addressed by dx

out transfers a byte, word, or double word to an output port from al,
ax, or eax. The program can specify the number of the port using the
same methods as the in instruction. The destination operand should be an
immediate value in range from 0 to 255, or dx register. The source operand
should be al, ax, or eax register.

out 20h,ax ; output word to port 20h

out dx,al ; output byte to port addressed by dx

2.1.8 Strings operations

The string operations operate on one element of a string. A string element
may be a byte, a word, or a double word. The string elements are addressed
by si and di (or esi and edi) registers. After every string operation si

and/or di (or esi and/or edi) are automatically updated to point to the
next element of the string. If DF (direction flag) is zero, the index registers
are incremented, if DF is one, they are decremented. The amount of the
increment or decrement is 1, 2, or 4 depending on the size of the string
element. Every string operation instruction has short forms which have no
operands and use si and/or di when the code type is 16–bit, and esi and/or
edi when the code type is 32–bit. si and esi by default address data in
the segment selected by ds, di and edi always address data in the segment
selected by es. Short form is obtained by attaching to the mnemonic of
string operation letter specifying the size of string element, it should be b

for byte element, w for word element, and d for double word element. Full
form of string operation needs operands providing the size operator and the
memory addresses, which can be si or esi with any segment prefix, di or
edi always with es segment prefix.

movs transfers the string element pointed to by si (or esi) to the location
pointed to by di (or edi). Size of operands can be byte, word or dword. The
destination operand should be memory addressed by di or edi, the source
operand should be memory addressed by si or esi with any segment prefix.
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movs byte [di],[si] ; transfer byte

movs word [es:di],[ss:si] ; transfer word

movsd ; transfer double word

cmps subtracts the destination string element from the source string ele-
ment and updates the flags AF, SF, PF, CF and OF, but it does not change
any of the compared elements. If the string elements are equal, ZF is set,
otherwise it is cleared. The first operand for this instruction should be the
source string element addressed by si or esi with any segment prefix, the
second operand should be the destination string element addressed by di or
edi.

cmpsb ; compare bytes

cmps word [ds:si],[es:di] ; compare words

cmps dword [fs:esi],[edi] ; compare double words

scas subtracts the destination string element from al, ax, or eax (de-
pending on the size of string element) and updates the flags AF, SF, ZF, PF,
CF and OF. If the values are equal, ZF is set, otherwise it is cleared. The
operand should be the destination string element addressed by di or edi.

scas byte [es:di] ; scan byte

scasw ; scan word

scas dword [es:edi] ; scan double word

lods places the source string element into al, ax, or eax. The operand
should be the source string element addressed by si or esi with any segment
prefix.

lods byte [ds:si] ; load byte

lods word [cs:si] ; load word

lodsd ; load double word

stos places the value of al, ax, or eax into the destination string element.
Rules for the operand are the same as for the scas instruction.

ins transfers a byte, word, or double word from an input port addressed
by dx register to the destination string element. The destination operand
should be memory addressed by di or edi, the source operand should be the
dx register.

insb ; input byte

ins word [es:di],dx ; input word

ins dword [edi],dx ; input double word
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outs transfers the source string element to an output port addressed by
dx register. The destination operand should be the dx register and the source
operand should be memory addressed by si or esi with any segment prefix.

outs dx,byte [si] ; output byte

outsw ; output word

outs dx,dword [gs:esi] ; output double word

The repeat prefixes rep, repe/repz, and repne/repnz specify repeated
string operation. When a string operation instruction has a repeat prefix,
the operation is executed repeatedly, each time using a different element of
the string. The repetition terminates when one of the conditions specified
by the prefix is satisfied. All three prefixes automatically decrease cx or ecx
register (depending whether string operation instruction uses the 16–bit or
32–bit addressing) after each operation and repeat the associated operation
until cx or ecx is zero. repe/repz and repne/repnz are used exclusively
with the scas and cmps instructions (described below). When these prefixes
are used, repetition of the next instruction depends on the zero flag (ZF)
also, repe and repz terminate the execution when the ZF is zero, repne and
repnz terminate the execution when the ZF is set.

rep movsd ; transfer multiple double words

repe cmpsb ; compare bytes until not equal

2.1.9 Flag control instructions

The flag control instructions provide a method for directly changing the state
of bits in the flag register. All instructions described in this section have no
operands.

stc sets the CF (carry flag) to 1, clc zeroes the CF, cmc changes the CF
to its complement. std sets the DF (direction flag) to 1, cld zeroes the DF,
sti sets the IF (interrupt flag) to 1 and therefore enables the interrupts, cli
zeroes the IF and therefore disables the interrupts.

lahf copies SF, ZF, AF, PF, and CF to bits 7, 6, 4, 2, and 0 of the ah

register. The contents of the remaining bits are undefined. The flags remain
unaffected.

sahf transfers bits 7, 6, 4, 2, and 0 from the ah register into SF, ZF, AF,
PF, and CF.

pushf decrements esp by two or four and stores the low word or double
word of flags register at the top of stack, size of stored data depends on the
current code setting. pushfw variant forces storing the word and pushfd

forces storing the double word.



34 CHAPTER 2. INSTRUCTION SET

popf transfers specific bits from the word or double word at the top of
stack, then increments esp by two or four, this value depends on the current
code setting. popfw variant forces restoring from the word and popfd forces
restoring from the double word.

2.1.10 Conditional operations

The instructions obtained by attaching the condition mnemonic (see table
2.1) to the set mnemonic set a byte to one if the condition is true and set the
byte to zero otherwise. The operand should be an 8–bit be general register
or the byte in memory.

setne al ; set al if zero flag cleared

seto byte [bx] ; set byte if overflow

salc instruction sets the all bits of al register when the carry flag is set
and zeroes the al register otherwise. This instruction has no arguments.

The instructions obtained by attaching the condition mnemonic to the
cmov mnemonic transfer the word or double word from the general register
or memory to the general register only when the condition is true. The
destination operand should be general register, the source operand can be
general register or memory.

cmove ax,bx ; move when zero flag set

cmovnc eax,[ebx] ; move when carry flag cleared

cmpxchg compares the value in the al, ax, or eax register with the des-
tination operand. If the two values are equal, the source operand is loaded
into the destination operand. Otherwise, the destination operand is loaded
into the al, ax, or eax register. The destination operand may be a general
register or memory, the source operand must be a general register.

cmpxchg dl,bl ; compare and exchange with register

cmpxchg [bx],dx ; compare and exchange with memory

cmpxchg8b compares the 64–bit value in edx and eax registers with the
destination operand. If the values are equal, the 64–bit value in ecx and ebx

registers is stored in the destination operand. Otherwise, the value in the
destination operand is loaded into edx and eax registers. The destination
operand should be a quad word in memory.

cmpxchg8b [bx] ; compare and exchange 8 bytes
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2.1.11 Miscellaneous instructions

nop instruction occupies one byte but affects nothing but the instruction
pointer. This instruction has no operands and doesn’t perform any operation.

ud2 instruction generates an invalid opcode exception. This instruction
is provided for software testing to explicitly generate an invalid opcode. This
is instruction has no operands.

xlat replaces a byte in the al register with a byte indexed by its value
in a translation table addressed by bx or ebx. The operand should be a byte
memory addressed by bx or ebx with any segment prefix. This instruction
has also a short form xlatb which has no operands and uses the bx or ebx

address in the segment selected by ds depending on the current code setting.
lds transfers a pointer variable from the source operand to ds and the

destination register. The source operand must be a memory operand, and
the destination operand must be a general register. The ds register receives
the segment selector of the pointer while the destination register receives the
offset part of the pointer. les, lfs, lgs and lss operate identically to lds

except that rather than ds register the es, fs, gs and ss is used respectively.

lds bx,[si] ; load pointer to ds:bx

lea transfers the offset of the source operand (rather than its value) to
the destination operand. The source operand must be a memory operand,
and the destination operand must be a general register.

lea dx,[bx+si+1] ; load effective address to dx

cpuid returns processor identification and feature information in the eax,
ebx, ecx, and edx registers. The information returned is selected by entering
a value in the eax register before the instruction is executed. This instruction
has no operands.

pause instruction delays the execution of the next instruction an imple-
mentation specific amount of time. It can be used to improve the performance
of spin wait loops. This instruction has no operands.

enter creates a stack frame that may be used to implement the scope
rules of block–structured high–level languages. A leave instruction at the
end of a procedure complements an enter at the beginning of the procedure
to simplify stack management and to control access to variables for nested
procedures. The enter instruction includes two parameters. The first pa-
rameter specifies the number of bytes of dynamic storage to be allocated on
the stack for the routine being entered. The second parameter corresponds
to the lexical nesting level of the routine, it can be in range from 0 to 31.
The specified lexical level determines how many sets of stack frame pointers
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the CPU copies into the new stack frame from the preceding frame. This
list of stack frame pointers is sometimes called the display. The first word
(or double word when code is 32–bit) of the display is a pointer to the last
stack frame. This pointer enables a leave instruction to reverse the action of
the previous enter instruction by effectively discarding the last stack frame.
After enter creates the new display for a procedure, it allocates the dynamic
storage space for that procedure by decrementing esp by the number of bytes
specified in the first parameter. To enable a procedure to address its display,
enter leaves bp (or ebp) pointing to the beginning of the new stack frame. If
the lexical level is zero, enter pushes bp (or ebp), copies sp to bp (or esp to
ebp) and then subtracts the first operand from esp. For nesting levels greater
than zero, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer.

enter 2048,0 ; enter and allocate 2048 bytes on stack

2.1.12 System instructions

lmsw loads the operand into the machine status word (bits 0 through 15 of
cr0 register), while smsw stores the machine status word into the destination
operand. The operand for both those instructions can be 16–bit general
register or memory, for smsw it can also be 32–bit general register.

lmsw ax ; load machine status from register

smsw [bx] ; store machine status to memory

lgdt and lidt instructions load the values in operand into the global
descriptor table register or the interrupt descriptor table register respectively.
sgdt and sidt store the contents of the global descriptor table register or the
interrupt descriptor table register in the destination operand. The operand
should be a 6 bytes in memory.

lgdt [ebx] ; load global descriptor table

lldt loads the operand into the segment selector field of the local de-
scriptor table register and sldt stores the segment selector from the local
descriptor table register in the operand. ltr loads the operand into the seg-
ment selector field of the task register and str stores the segment selector
from the task register in the operand. Rules for operand are the same as for
the lmsw and smsw instructions.

lar loads the access rights from the segment descriptor specified by the
selector in source operand into the destination operand and sets the ZF flag.
The destination operand can be a 16-bit or 32-bit general register. The source
operand should be a 16-bit general register or memory.
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lar ax,[bx] ; load access rights into word

lar eax,dx ; load access rights into double word

lsl loads the segment limit from the segment descriptor specified by the
selector in source operand into the destination operand and sets the ZF flag.
Rules for operand are the same as for the lar instruction.

verr and verw verify whether the code or data segment specified with
the operand is readable or writable from the current privilege level. The
operand should be a word, it can be general register or memory. If the
segment is accessible and readable (for verr) or writable (for verw) the ZF
flag is set, otherwise it’s cleared. Rules for operand are the same as for the
lldt instruction.

arpl compares the RPL (requestor’s privilege level) fields of two segment
selectors. The first operand contains one segment selector and the second
operand contains the other. If the RPL field of the destination operand is
less than the RPL field of the source operand, the ZF flag is set and the
RPL field of the destination operand is increased to match that of the source
operand. Otherwise, the ZF flag is cleared and no change is made to the
destination operand. The destination operand can be a word general register
or memory, the source operand must be a general register.

arpl bx,ax ; adjust RPL of selector in register

arpl [bx],ax ; adjust RPL of selector in memory

clts clears the TS (task switched) flag in the cr0 register. This instruc-
tion has no operands.

lock prefix causes the processor’s bus–lock signal to be asserted during
execution of the accompanying instruction. In a multiprocessor environment,
the bus–lock signal insures that the processor has exclusive use of any shared
memory while the signal is asserted. The lock prefix can be prepended
only to the following instructions and only to those forms of the instructions
where the destination operand is a memory operand: add, adc, and, btc,
btr, bts, cmpxchg, cmpxchg8b, dec, inc, neg, not, or, sbb, sub, xor, xadd
and xchg. If the lock prefix is used with one of these instructions and the
source operand is a memory operand, an undefined opcode exception may be
generated. An undefined opcode exception will also be generated if the lock

prefix is used with any instruction not in the above list. The xchg instruction
always asserts the bus–lock signal regardless of the presence or absence of
the lock prefix.

hlt stops instruction execution and places the processor in a halted state.
An enabled interrupt, a debug exception, the BINIT, INIT or the RESET
signal will resume execution. This instruction has no operands.
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invlpg invalidates (flushes) the TLB (translation lookaside buffer) entry
specified with the operand, which should be a memory. The processor de-
termines the page that contains that address and flushes the TLB entry for
that page.

rdmsr loads the contents of a 64–bit MSR (model specific register) of the
address specified in the ecx register into registers edx and eax. wrmsr writes
the contents of registers edx and eax into the 64–bit MSR of the address
specified in the ecx register. rdtsc loads the current value of the processor’s
time stamp counter from the 64–bit MSR into the edx and eax registers.
The processor increments the time stamp counter MSR every clock cycle
and resets it to 0 whenever the processor is reset. rdpmc loads the contents
of the 40–bit performance monitoring counter specified in the ecx register
into registers edx and eax. These instructions have no operands.

wbinvd writes back all modified cache lines in the processor’s internal
cache to main memory and invalidates (flushes) the internal caches. The in-
struction then issues a special function bus cycle that directs external caches
to also write back modified data and another bus cycle to indicate that the
external caches should be invalidated. This instruction has no operands.

rsm return program control from the system management mode to the
program that was interrupted when the processor received an SMM interrupt.
This instruction has no operands.

sysenter executes a fast call to a level 0 system procedure, sysexit

executes a fast return to level 3 user code. The addresses used by these
instructions are stored in MSRs. These instructions have no operands.

2.1.13 FPU instructions

The FPU (Floating-Point Unit) instructions operate on the floating–point
values in three formats: single precision (32–bit), double precision (64–bit)
and double extended precision (80–bit). The FPU registers form the stack
and each of them holds the double extended precision floating–point value.
When some values are pushed onto the stack or are removed from the top,
the FPU registers are shifted, so st0 is always the value on the top of FPU
stack, st1 is the first value below the top, etc. The st0 name has also the
synonym st.

fld pushes the floating–point value onto the FPU register stack. The
operand can be 32–bit, 64–bit or 80–bit memory location or the FPU register,
its value is then loaded onto the top of FPU register stack (the st0 register)
and is automatically converted into the double extended precision format.

fld dword [bx] ; load single prevision value from memory
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fld st2 ; push value of st2 onto register stack

fld1, fldz, fldl2t, fldl2e, fldpi, fldlg2 and fldln2 load the com-
monly used contants onto the FPU register stack. The loaded constants are
+1.0, +0.0, log2 10, log2 e, π, log10 2 and ln 2 respectively. These instructions
have no operands.

fild convert the singed integer source operand into double extended pre-
cision floating-point format and pushes the result onto the FPU register stack.
The source operand can be a 16–bit, 32–bit or 64–bit memory location.

fild qword [bx] ; load 64-bit integer from memory

fst copies the value of st0 register to the destination operand, which can
be 32–bit or 64–bit memory location or another FPU register. fstp performs
the same operation as fst and then pops the register stack, getting rid of
st0. fstp accepts the same operands as the fst instruction and can also
store value in the 80–bit memory.

fst st3 ; copy value of st0 into st3 register

fstp tword [bx] ; store value in memory and pop stack

fist converts the value in st0 to a signed integer and stores the result
in the destination operand. The operand can be 16–bit or 32–bit memory
location. fistp performs the same operation and then pops the register
stack, it accepts the same operands as the fist instruction and can also store
integer value in the 64–bit memory, so it has the same rules for operands as
fild instruction.

fbld converts the packed BCD integer into double extended precision
floating–point format and pushes this value onto the FPU stack. fbstp

converts the value in st0 to an 18–digit packed BCD integer, stores the
result in the destination operand, and pops the register stack. The operand
should be an 80–bit memory location.

fadd adds the destination and source operand and stores the sum in the
destination location. The destination operand is always an FPU register,
if the source is a memory location, the destination is st0 register and only
source operand should be specified. If both operands are FPU registers, at
least one of them should be st0 register. An operand in memory can be a
32–bit or 64–bit value.

fadd qword [bx] ; add double precision value to st0

fadd st2,st0 ; add st0 to st2



40 CHAPTER 2. INSTRUCTION SET

faddp adds the destination and source operand, stores the sum in the des-
tination location and then pops the register stack. The destination operand
must be an FPU register and the source operand must be the st0. When no
operands are specified, st1 is used as a destination operand.

faddp ; add st0 to st1 and pop the stack

faddp st2,st0 ; add st0 to st2 and pop the stack

fiadd instruction converts an integer source operand into double ex-
tended precision floating–point value and adds it to the destination operand.
The operand should be a 16–bit or 32–bit memory location.

fiadd word [bx] ; add word integer to st0

fsub, fsubr, fmul, fdiv, fdivr instruction are similar to fadd, have
the same rules for operands and differ only in the perfomed computation.
fsub substracts the source operand from the destination operand, fsubr

substract the destination operand from the source operand, fmul multiplies
the destination and source operands, fdiv divides the destination operand by
the source operand and fdivr divides the source operand by the destination
operand. fsubp, fsubrp, fmulp, fdivp, fdivrp perform the same operations
and pop the register stack, the rules for operand are the same as for the faddp
instruction. fisub, fisubr, fimul, fidiv, fidivr perform these operations
after converting the integer source operand into floating–point value, they
have the same rules for operands as fiadd instruction.

fsqrt computes the square root of the value in st0 register, fsin com-
putes the sine of that value, fcos computes the cosine of that value, fchs
complements its sign bit, fabs clears its sign to create the absolute value,
frndint rounds it to the nearest integral value, depending on the current
rounding mode. f2xm1 computes the exponential value of 2 to the power of
st0 and substracts the 1.0 from it, the value of st0 must lie in the range −1.0
to +1.0. All these instruction store the result in st0 and have no operands.

fsincos computes both the sine and the cosine of the value in st0 regis-
ter, stores the sine in st0 and pushes the cosine on the top of FPU register
stack. fptan computes the tangent of the value in st0, stores the result in
st0 and pushes a 1.0 onto the FPU register stack. fpatan computes the
arctangent of the value in st1 divided by the value in st0, stores the result
in st1 and pops the FPU register stack. fyl2x computes the binary loga-
rithm of st0, multiplies it by st1, stores the result in st1 and pops the FPU
register stack; fyl2xp1 performs the same operation but it adds 1.0 to st0

before computing the logarithm. fprem computes the remainder obtained
from dividing the value in st0 by the value in st1, and stores the result in
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st0. fprem1 performs the same operation as fprem, but it computes the
remainder in the way specified by IEEE Standard 754. fscale truncates the
value in st1 and increases the exponent of st0 by this value. fxtract sepa-
rates the value in st0 into its exponent and significand, stores the exponent
in st0 and pushes the significand onto the register stack. fnop performs no
operation. These instruction have no operands.

fxch exchanges the contents of st0 an another FPU register. The operand
should be an FPU register, if no operand is specified, the contents of st0 and
st1 are exchanged.

fcom and fcomp compare the contents of st0 and the source operand and
set flags in the FPU status word according to the results. fcomp additionally
pops the register stack after performing the comparison. The operand can
be a single or double precision value in memory or the FPU register. When
no operand is specified, st1 is used as a source operand.

fcom ; compare st0 with st1

fcomp st2 ; compare st0 with st2 and pop stack

fcompp compares the contents of st0 and st1, sets flags in the FPU
status word according to the results and pops the register stack twice. This
instruction has no operands.

fucom, fucomp and fucompp performs an unordered comparison of two
FPU registers. Rules for operands are the same as for the fcom, fcomp and
fcompp, but the source operand must be an FPU register.

ficom and ficomp compare the value in st0 with an integer source
operand and set the flags in the FPU status word according to the results.
ficomp additionally pops the register stack after performing the comparison.
The integer value is converted to double extended precision floating–point
format before the comparison is made. The operand should be a 16–bit or
32–bit memory location.

ficom word [bx] ; compare st0 with 16-bit integer

fcomi, fcomip, fucomi, fucomip perform the comparison of st0 with
another FPU register and set the ZF, PF and CF flags according to the
results. fcomip and fucomip additionaly pop the register stack after per-
forming the comparison. The instructions obtained by attaching the FPU
condition mnemonic (see table 2.2) to the fcmov mnemonic transfer the spec-
ified FPU register into st0 register if the fiven test condition is true. These
instruction allow two different syntaxes, one with single operand specifying
the source FPU register, and one with two operands, in that case destination
operand should be st0 register and the second operand specifies the source
FPU register.
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fcomi st2 ; compare st0 with st2 and set flags

fcmovb st0,st2 ; transfer st2 to st0 if below

Mnemonic Condition tested Description

b CF = 1 below
e ZF = 1 equal
be CF or ZF = 1 below or equal
u PF = 1 unordered
nb CF = 0 not below
ne ZF = 0 not equal
nbe CF and ZF = 0 not below nor equal
nu PF = 0 not unordered

Table 2.2: FPU conditions.

ftst compares the value in st0 with 0.0 and sets the flags in the FPU
status word according to the results. fxam examines the contents of the st0

and sets the flags in FPU status word to indicate the class of value in the
register. These instructions have no operands.

fstsw and fnstsw store the current value of the FPU status word in the
destination location. The destination operand can be either a 16–bit memory
or the ax register. fstsw checks for pending umasked FPU exceptions before
storing the status word, fnstsw does not.

fstcw and fnstcw store the current value of the FPU control word at the
specified destination in memory. fstcw checks for pending umasked FPU
exceptions before storing the control word, fnstcw does not. fldcw loads
the operand into the FPU control word. The operand should be a 16–bit
memory location.

fstenv and fnstenv store the current FPU operating environment at the
memory location specified with the destination operand, and then mask all
FPU exceptions. fstenv checks for pending umasked FPU exceptions before
proceeding, fnstenv does not. fldenv loads the complete operating environ-
ment from memory into the FPU. fsave and fnsave store the current FPU
state (operating environment and register stack) at the specified destination
in memory and reinitializes the FPU. fsave check for pending unmasked
FPU exceptions before proceeding, fnsave does not. frstor loads the FPU
state from the specified memory location. All these instructions need an
operand being a memory location.

finit and fninit set the FPU operating environment into its default
state. finit checks for pending unmasked FPU exception before proceeding,
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fninit does not. fclex and fnclex clear the FPU exception flags in the
FPU status word. fclex checks for pending unmasked FPU exception before
proceeding, fnclex does not. wait and fwait are synonyms for the same
instruction, which causes the processor to check for pending unmasked FPU
exceptions and handle them before proceeding. These instruction have no
operands.

ffree sets the tag associated with specified FPU register to empty. The
operand should be an FPU register.

fincstp and fdecstp rotate the FPU stack by one by adding or sub-
stracting one to the pointer of the top of stack. These instruction have no
operands.

2.1.14 MMX instructions

The MMX instructions operate on the packed integer types and use the
MMX registers, which are the low 64–bit parts of the 80–bit FPU registers.
Because of this MMX instructions cannot be used at the same time as FPU
instructions. They can operate on packed bytes (eight 8–bit integers), packed
words (four 16–bit integers) or packed double words (two 32–bit integers),
use of packed formats allows to perform operations on multiple data at one
time.

movq copies a quad word from the source operand to the destination
operand. At least one of the operands must be a MMX register, the second
one can be also a MMX register or 64–bit memory location.

movq mm0,mm1 ; move quad word from register to register

movq mm2,[ebx] ; move quad word from memory to register

movd copies a double word from the source operand to the destination
operand. One of the operands must be a MMX register, the second one can
be a general register or 32–bit memory location. Only low double word of
MMX register is used.

All general MMX operations have two operands, the destination operand
should be a MMX register, the source operand can be a MMX register or
64–bit memory location. Operation is performed on the corresponding data
elements of the source and destination operand and stored in the data ele-
ments of the destination operand. paddb, paddw and paddd perform the ad-
dition of packed bytes, packed words, or packed double words. psubb, psubw
and psubd perform the substraction of appropriate types. paddsb, paddsw,
psubsb and psubsw perform the addition or substraction of packed bytes
or packed words with the signed saturation. paddusb, paddusw, psubusb,
psubusw are analoguous, but with unsigned saturation. pmulhw and pmullw
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performs a signed multiply of the packed words and store the high or low
words of the results in the destination operand. pmaddwd performs a multiply
of the packed words and adds the four intermediate double word products in
pairs to produce result as a packed double words. pand, por and pxor per-
form the logical operations on the quad words, pandn peforms also a logical
negation of the destination operand before the operation. pcmpeqb, pcmpeqw
and pcmpeqd compare for equality of packed bytes, packed words or packed
double words. If a pair of data elements is equal, the corresponding data ele-
ment in the destination operand is filled with bits of value 1, otherwise it’s set
to 0. pcmpgtb, pcmpgtw and pcmpgtd perform the similar operation, but they
check whether the data elements in the destination operand are greater than
the correspoding data elements in the source operand. packsswb converts
packed signed words into packed signed bytes, packssdw converts packed
signed double words into packed signed words, using saturation to handle
overflow conditions. packuswb converts packed signed words into packed un-
signed bytes. Converted data elements from the source operand are stored in
the low part of the destination operand, while converted data elements from
the destination operand are stored in the high part. punpckhbw, punpckhwd
and punpckhdq interleaves the data elements from the high parts of the source
and destination operands and stores the result into the destination operand.
punpcklbw, punpcklwd and punpckldq perform the same operation, but the
low parts of the source and destination operand are used.

paddsb mm0,[esi] ; add packed bytes with signed saturation

pcmpeqw mm3,mm7 ; compare packed words for equality

psllw, pslld and psllq perform logical shift left of the packed words,
packed double words or a single quad word in the destination operand by the
amount specified in the source operand. psrlw, psrld and psrlq perform
logical shift right of the packed words, packed double words or a single quad
word. psraw and psrad perform arithmetic shift of the packed words or
double words. The destination operand should be a MMX register, while
source operand can be a MMX register, 64–bit memory location, or 8–bit
immediate value.

psllw mm2,mm4 ; shift words left logically

psrad mm4,[ebx] ; shift double words right arithmetically

emms makes the FPU registers usable for the FPU instructions, it must be
used before using the FPU instructions if any MMX instructions were used.
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2.1.15 SSE instructions

The SSE extension adds more MMX instructions and also introduces the
operations on packed single precision floating point values. The 128–bit
packed single precision format consists of four single precision floating point
values. The 128–bit SSE registers are designed for the purpose of operations
on this data type.

movaps and movups transfer a double quad word operand containing
packed single precision values from source operand to destination operand.
At least one of the operands have to be a SSE register, the second one can
be also a SSE register or 128–bit memory location. Memory operands for
movaps instruction must be aligned on boundary of 16 bytes, operands for
movups instruction don’t have to be aligned.

movups xmm0,[ebx] ; move unaligned double quad word

movlps moves packed two single precision values between the memory and
the low quad word of SSE register. movhps moved packed two single precision
values between the memory and the high quad word of SSE register. One
of the operands must be a SSE register, and the other operand must be a
64–bit memory location.

movlps xmm0,[ebx] ; move memory to low quad word of xmm0

movhps [esi],xmm7 ; move high quad word of xmm7 to memory

movlhps moves packed two single precision values from the low quad word
of source register to the high quad word of destination register. movhlps

moves two packed single precision values from the high quad word of source
register to the low quad word of destination register. Both operands have to
be a SSE registers.

movmskps transfers the most significant bit of each of the four single
precision values in the SSE register into low four bits of a general register.
The source operand must be a SSE register, the destination operand must
be a general register.

movss transfers a single precision value between source and destination
operand (only the low double word is trasferred). At least one of the operands
have to be a SSE register, the second one can be also a SSE register or 32–bit
memory location.

movss [edi],xmm3 ; move low double word of xmm3 to memory

Each of the SSE arithmetic operations has two variants. When the
mnemonic ends with ps, the source operand can be a 128–bit memory loca-
tion or a SSE register, the destination operand must be a SSE register and
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the operation is performed on packed four single precision values, for each
pair of the corresponding data elements separately, the result is stored in the
destination register. When the mnemonic ends with ss, the source operand
can be a 32–bit memory location or a SSE register, the destination operand
must be a SSE register and the operation is performed on single precision
values, only low double words of SSE registers are used in this case, the result
is stored in the low double word of destination register. addps and addss

add the values, subps and subss substract the source value from destination
value, mulps and mulss multiply the values, divps and divss divide the
destination value by the source value, rcpps and rcpss compute the approx-
imate reciprocal of the source value, sqrtps and sqrtss compute the square
root of the source value, rsqrtps and rsqrtss compute the approximate
reciprocal of square root of the source value, maxps and maxss compare the
source and destination values and return the greater one, minps and minss

compare the source and destination values and return the lesser one.

mulss xmm0,[ebx] ; multiply single precision values

addps xmm3,xmm7 ; add packed single precision values

andps, andnps, orps and xorps perform the logical operations on packed
single precision values. The source operand can be a 128–bit memory location
or a SSE register, the destination operand must be a SSE register.

cmpps compares packed single precision values and returns a mask result
into the destination operand, which must be a SSE register. The source
operand can be a 128–bit memory location or SSE register, the third operand
must be an immediate operand selecting code of one of the eight compare
conditions (table 2.3). cmpss performs the same operation on single precision
values, only low double word of destination register is affected, in this case
source operand can be a 32–bit memory location or SSE register. These
two instructions have also variants with only two operands and the condition
encoded within mnemonic. Their mnemonics are obtained by attaching the
mnemonic from table 2.3 to the cmp mnemonic and then attaching the ps or
ss at the end.

cmpps xmm2,xmm4,0 ; compare packed single precision values

cmpltss xmm0,[ebx] ; compare single precision values

comiss and ucomiss compare the single precision values and set the ZF,
PF and CF flags to show the result. The destination operand must be a
SSE register, the source operand can be a 32–bit memory location or SSE
register.

shufps moves any two of the four single precision values from the desti-
nation operand into the low quad word of the destination operand, and any
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Code Mnemonic Description

0 eq equal
1 lt less than
2 le less than or equal
3 unord unordered
4 neq not equal
5 nlt not less than
6 nle not less than nor equal
7 ord ordered

Table 2.3: SSE conditions.

two of the four values from the source operand into the high quad word of
the destination operand. The destination operand must be a SSE register,
the source operand can be a 128–bit memory location or SSE register, the
third operand must be an 8–bit immediate value selecting which values will
be moved into the destination operand. Bits 0 and 1 select the value to be
moved from destination operand to the low double word of the result, bits
2 and 3 select the value to be moved from the destination operand to the
second double word, bits 4 and 5 select the value to be moved from the source
operand to the third double word, and bits 6 and 7 select the value to be
moved from the source operand to the high double word of the result.

shufps xmm0,xmm0,10010011b ; shuffle double words

unpckhps performs an interleaved unpack of the values from the high
parts of the source and destination operands and stores the result in the
destination operand, which must be a SSE register. The source operand
can be a 128–bit memory location or a SSE register. unpcklps performs
an interleaved unpack of the values from the low parts of the source and
destination operand and stores the result in the destination operand, the
rules for operands are the same.

cvtpi2ps converts packed two double word integers into the the packed
two single precision floating point values and stores the result in the low quad
word of the destination operand, which should be a SSE register. The source
operand can be a 64–bit memory location or MMX register.

cvtpi2ps xmm0,mm0 ; integers to single precision values

cvtsi2ss converts a double word integer into a single precision floating
point value and stores the result in the low double word of the destination
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operand, which should be a SSE register. The source operand can be a 32–bit
memory location or 32–bit general register.

cvtsi2ss xmm0,eax ; integer to single precision value

cvtps2pi converts packed two single precision floating point values into
packed two double word integers and stores the result in the destination
operand, which should be a MMX register. The source operand can be a
64–bit memory location or SSE register, only low quad word of SSE register
is used. cvttps2pi performs the similar operation, except that truncation
is used to round a source values to integers, rules for the operands are the
same.

cvtps2pi mm0,xmm0 ; single precision values to integers

cvtss2si convert a single precision floating point value into a double word
integer and stores the result in the destination operand, which should be a
32–bit general register. The source operand can be a 32–bit memory location
or SSE register, only low double word of SSE register is used. cvttss2si

performs the similar operation, except that truncation is used to round a
source value to integer, rules for the operands are the same.

cvtss2si eax,xmm0 ; single precision value to integer

pextrw copies the word in the source operand specified by the third
operand to the destination operand. The source operand must be a MMX
register, the destination operand must be a 32–bit general register (but only
the low word of it is affected), the third operand must an 8–bit immediate
value.

pextrw eax,mm0,1 ; extract word into eax

pinsrw inserts a word from the source operand in the destination operand
at the location specified with the third operand, which must be an 8–bit
immediate value. The destination operand must be a MMX register, the
source operand can be a 16–bit memory location or 32–bit general register
(only low word of the register is used).

pinsrw mm1,ebx,2 ; insert word from ebx

pavgb and pavgw compute average of packed bytes or words. pmaxub re-
turn the maximum values of packed unsigned bytes, pminub returns the min-
imum values of packed unsigned bytes, pmaxsw returns the maximum values
of packed signed words, pminsw returns the minimum values of packed signed
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words. pmulhuw performs a unsigned multiply of the packed words and stores
the high words of the results in the destination operand. psadbw computes
the absolute differences of packed unsigned bytes, sums the differences, and
stores the sum in the low word of destination operand. All these instructions
follow the same rules for operands as the general MMX operations described
in previous section.

pmovmskb creates a mask made of the most significant bit of each byte
in the source operand and stores the result in the low byte of destination
operand. The source operand must be a MMX register, the destination
operand must a 32–bit general register.

pshufw inserts words from the source operand in the destination operand
from the locations specified with the third operand. The destination operand
must be a MMX register, the source operand can be a 64–bit memory location
or MMX register, third operand must an 8–bit immediate value selecting
which values will be moved into destination operand, in the similar way as
the third operand of the shufps instruction.

movntq moves the quad word from the source operand to memory using a
non–temporal hint to minimize cache pollution. The source operand should
be a MMX register, the destination operand should be a 64–bit memory
location. movntps stores packed single precision values from the SSE regis-
ter to memory using a non–temporal hint. The source operand should be a
SSE register, the destination operand should be a 128–bit memory location.
maskmovq stores selected bytes from the first operand into a 64–bit memory
location using a non–temporal hint. Both operands should be a MMX reg-
isters, the second operand selects wich bytes from the source operand are
written to memory. The memory location is pointed by DI (or EDI) register
in the segment selected by DS.

prefetcht0, prefetcht1, prefetcht2 and prefetchnta fetch the line
of data from memory that contains byte specified with the operand to a
specified location in hierarchy. The operand should be an 8–bit memory
location.

sfence performs a serializing operation on all instruction storing to mem-
ory that were issued prior to it. This instruction has no operands.

ldmxcsr loads the 32–bit memory operand into the MXCSR register.
stmxcsr stores the contents of MXCSR into a 32–bit memory operand.

fxsave saves the current state of the FPU, MXCSR register, and all
the FPU and SSE registers to a 512–byte memory location specified in the
destination operand. fxrstor reloads data previously stored with fxsave in-
struction from the specified 512–byte memory location. The memory operand
for both those instructions must be aligned on 16 byte boundary, it should
declare operand of no specified size.
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2.1.16 SSE2 instructions

The SSE2 extension introduces the operations on packed double precision
floating point values, extends the syntax of MMX instructions, and adds
also some new instructions.

movapd and movupd transfer a double quad word operand containing
packed double precision values from source operand to destination operand.
These instructions are analogous to movaps and movups and have the same
rules for operands.

movlpd moves double precision value between the memory and the low
quad word of SSE register. movhpd moved double precision value between
the memory and the high quad word of SSE register. These instructions are
analogous to movlps and movhps and have the same rules for operands.

movmskpd transfers the most significant bit of each of the two double pre-
cision values in the SSE register into low two bits of a general register. This
instruction is analogous to movmskps and has the same rules for operands.

movsd transfers a double precision value between source and destination
operand (only the low quad word is trasferred). At least one of the operands
have to be a SSE register, the second one can be also a SSE register or 64–bit
memory location.

Arithmetic operations on double precision values are: addpd, addsd,
subpd, subsd, mulpd, mulsd, divpd, divsd, sqrtpd, sqrtsd, maxpd, maxsd,
minpd, minsd, and they are analoguous to arithmetic operations on single
precision values described in previous section. When the mnemonic ends
with pd instead of ps, the operation is performed on packed two double pre-
cision values, but rules for operands are the same. When the mnemonic ends
with sd instead of ss, the source operand can be a 64–bit memory location
or a SSE register, the destination operand must be a SSE register and the
operation is performed on double precision values, only low quad words of
SSE registers are used in this case.

andpd, andnpd, orpd and xorpd perform the logical operations on packed
double precision values. They are analoguous to SSE logical operations on
single prevision values and have the same rules for operands.

cmppd compares packed double precision values and returns and returns
a mask result into the destination operand. This instruction is analoguous to
cmpps and has the same rules for operands. cmpsd performs the same oper-
ation on double precision values, only low quad word of destination register
is affected, in this case source operand can be a 64–bit memory or SSE regis-
ter. Variant with only two operands are obtained by attaching the condition
mnemonic from table 2.3 to the cmp mnemonic and then attaching the pd or
sd at the end.
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comisd and ucomisd compare the double precision values and set the
ZF, PF and CF flags to show the result. The destination operand must be a
SSE register, the source operand can be a 128–bit memory location or SSE
register.

shufpd moves any of the two double precision values from the destination
operand into the low quad word of the destination operand, and any of the
two values from the source operand into the high quad word of the destination
operand. This instruction is analoguous to shufps and has the same rules
for operand. Bit 0 of the third operand selects the value to be moved from
the destination operand, bit 1 selects the value to be moved from the source
operand, the rest of bits are reserved and must be zeroed.

unpckhpd performs an unpack of the high quad words from the source
and destination operands, unpcklpd performs an unpack of the low quad
words from the source and destination operands. They are analoguous to
unpckhps and unpcklps, and have the same rules for operands.

cvtps2pd converts the packed two single precision floating point values
to two packed double precision floating point values, the destination operand
must be a SSE register, the source operand can be a 64–bit memory location
or SSE register. cvtpd2ps converts the packed two double precision floating
point values to packed two single precision floating point values, the desti-
nation operand must be a SSE register, the source operand can be a 128–bit
memory location or SSE register. cvtss2sd converts the single precision
floating point value to double precision floating point value, the destination
operand must be a SSE register, the source operand can be a 32–bit memory
location or SSE register. cvtsd2ss converts the double precision floating
point value to single precision floating point value, the destination operand
must be a SSE register, the source operand can be 64–bit memory location
or SSE register.

cvtpi2pd converts packed two double word integers into the the packed
double precision floating point values, the destination operand must be a
SSE register, the source operand can be a 64–bit memory location or MMX
register. cvtsi2sd converts a double word integer into a double precision
floating point value, the destination operand must be a SSE register, the
source operand can be a 32–bit memory location or 32–bit general register.
cvtpd2pi converts packed double precision floating point values into packed
two double word integers, the destination operand should be a MMX regis-
ter, the source operand can be a 128–bit memory location or SSE register.
cvttpd2pi performs the similar operation, except that truncation is used to
round a source values to integers, rules for operands are the same. cvtsd2si
converts a double precision floating point value into a double word integer, the
destination operand should be a 32–bit general register, the source operand
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can be a 64–bit memory location or SSE register. cvttsd2si performs the
similar operation, except that truncation is used to round a source value to
integer, rules for operands are the same.

cvtps2dq and cvttps2dq convert packed single precision floating point
values to packed four double word integers, storing them in the destination
operand. cvtpd2dq and cvttpd2dq convert packed double precision floating
point values to packed two double word integers, storing the result in the low
quad word of the destination operand. cvtdq2ps converts packed four double
word integers to packed single precision floating point values. cvtdq2pd

converts packed two double word integers from the low quad word of the
source operand to packed double precision floating point values. For all these
instruction destination operand must be a SSE register, the source operand
can be a 128–bit memory location or SSE register.

movdqa and movdqu transfer a double quad word operand containing
packed integers from source operand to destination operand. At least one of
the operands have to be a SSE register, the second one can be also a SSE reg-
ister or 128–bit memory location. Memory operands for movdqa instruction
must be aligned on boundary of 16 bytes, operands for movdqu instruction
don’t have to be aligned.

movq2dq moves the contents of the MMX source register to the low quad
word of destination SSE register. movdq2q moves the low quad word from
the source SSE register to the destination MMX register.

movq2dq xmm0,mm1 ; move from MMX register to SSE register

movdq2q mm0,xmm1 ; move from SSE register to MMX register

All MMX instructions operating on the 64–bit packed integers (those
with mnemonics starting with p) are extended to operate on 128–bit packed
integers located in SSE registers. Additional syntax for these instructions
needs an SSE register where MMX register was needed, and the 128–bit
memory location or SSE register where 64–bit memory location of MMX
register were needed. The exception is pshufw instruction, which doesn’t
allow extended syntax, but has two new variants: pshufhw and pshuflw,
which allow only the extended syntax, and perform the same operation as
pshufw on the high or low quad words of operands respectively. Also the
new instruction pshufd is introduced, which performs the same operation as
pshufw, but on the double words instead of words, it allows only the extended
syntax.

psubb xmm0,[esi] ; substract 16 packed bytes

pextrw eax,xmm0,7 ; extract highest word into eax
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paddq performs the addition of packed quad words, psubq performs the
substraction of packed quad words, pmuludq performs an unsigned multiply
of low double words from each corresponding quad words and returns the
results in packed quad words. These instructions follow the same rules for
operands as the general MMX operations described in 2.1.14.

pslldq and psrldq perform logical shift left or right of the double quad
word in the destination operand by the amount of bits specified in the source
operand. The destination operand should be a SSE register, source operand
should be an 8–bit immediate value.

punpckhqdq interleaves the high quad word of the source operand and
the high quad word of the destination operand and writes them to the desti-
nation SSE register. punpcklqdq interleaves the low quad word of the source
operand and the low quad word of the destination operand and writes them
to the destination SSE register. The source operand can be a 128–bit memory
location or SSE register.

movntdq stores packed integer data from the SSE register to memory
using non–temporal hint. The source operand should be a SSE register, the
destination operand should be a 128–bit memory location. movntpd stores
packed double precision values from the SSE register to memory using a
non–temporal hint. Rules for operand are the same. movnti stores integer
from a general register to memory using a non–temporal hint. The source
operand should be a 32–bit general register, the destination operand should
be a 32–bit memory location. maskmovdqu stores selected bytes from the first
operand into a 128–bit memory location using a non–temporal hint. Both
operands should be a SSE registers, the second operand selects wich bytes
from the source operand are written to memory. The memory location is
pointed by DI (or EDI) register in the segment selected by DS and does not
need to be aligned.

clflush writes and invalidates the cache line associated with the address
of byte specified with the operand, which should be a 8–bit memory location.

lfence performs a serializing operation on all instruction loading from
memory that were issued prior to it. mfence performs a serializing operation
on all instruction accesing memory that were issued prior to it, and so it
combines the functions of sfence (described in previous section) and lfence

instructions. These instructions have no operands.

2.1.17 SSE3 instructions

Prescott technology introduces some new instructions to improve the perfor-
mance of SSE and SSE2 – this extension is called SSE3.

fisttp behaves like the fistp instruction and accepts the same operands,
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the only difference is that it always used truncation, irrespective of the round-
ing mode.

movshdup loads into destination operand the 128–bit value obtained from
the source value of the same size by filling the each quad word with the two
duplicates of the value in its high double word. movsldup performs the same
action, except it duplicates the values of low double words. The destination
operand should be SSE register, the source operand can be SSE register or
128–bit memory location.

movddup loads the 64–bit source value and duplicates it into high and
low quad word of the destination operand. The destination operand should
be SSE register, the source operand can be SSE register or 64–bit memory
location.

lddqu is functionally equivalent to movdqu instruction with memory as
source operand, but it may improve performance when the source operand
crosses a cacheline boundary. The destination operand has to be SSE register,
the source operand must be 128–bit memory location.

addsubps performs single precision addition of second and fourth pairs
and single precision substracion of the first and third pairs of floating point
values in the operands. addsubpd performs double precision addition of the
second pair and double precision substraction of the first pair of floating
point values in the operand. haddps performs the addition of two single pre-
cision values within the each quad word of source and destination operands,
and stores the results of such horizontal addition of values from destination
operand into low quad word of destination operand, and the results from the
source operand into high quad word of destination operand. haddpd per-
forms the addition of two double precision values within each operand, and
stores the result from destination operand into low quad word of destination
operand, and the result from source operand into high quad word of destina-
tion operand. All these instruction need the destination operand to be SSE
register, source operand can be SSE register or 128–bit memory location.

monitor sets up an address range for monitoring of write–back stores. It
need its three operands to be EAX, ECX and EDX register in that order.
mwait waits for a write–back store to the address range set up by the monitor
instruction. It uses two operands with additional parameters, first being the
EAX and second the ECX register.

2.1.18 AMD 3DNow! instructions

The 3DNow! extension adds a new MMX instructions to those described in
2.1.14, and introduces operation on the 64–bit packed floating point values,
each consisting of two single precision floating point values.
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These instructions follow the same rules as the general MMX operations,
the destination operand should be a MMX register, the source operand can be
a MMX register or 64–bit memory location. pavgusb computes the rounded
averages of packed unsigned bytes. pmulhrw performs a signed multiply of
the packed words, round the high word of each double word results and stores
them in the destination operand. pi2fd converts packed double word inte-
gers into packed floating point values. pf2id converts packed floating point
values into packed double word integers using truncation. pi2fw converts
packed word integers into packed floating point values, only low words of
each double word in source operand are used. pf2iw converts packed float-
ing point values to packed word integers, results are extended to double words
using the sign extension. pfadd adds packed floating point values. pfsub

and pfsubr substracts packed floating point values, the first one substracts
source values from destination values, the second one substracts destination
values from the source values. pfmul multiplies packed floating point values.
pfacc adds the low and high floating point values of the destination operand,
storing the result in the low double word of destination, and adds the low
and high floating point values of the source operand, storing the result in
the high double word of destination. pfnacc substracts the high floating
point value of the destination operand from the low, storing the result in
the low double word of destination, and substracts the high floating point
value of the source operand from the low, storing the result in the high dou-
ble word of destination. pfpnacc substracts the high floating point value of
the destination operand from the low, storing the result in the low double
word of destination, and adds the low and high floating point values of the
source operand, storing the result in the high double word of destination.
pfmax and pfmin compute the maximum and minimum of floating point val-
ues. pswapd reverses the high and low double word of the source operand.
pfrcp returns an estimates of the reciprocals of floating point values from the
source operand, pfrsqrt returns an estimates of the reciprocal square roots
of floating point values from the source operand, pfrcpit1 performs the first
step in the Newton–Raphson iteration to refine the reciprocal approxima-
tion produced by pfrcp instruction, pfrsqit1 performs the first step in the
Newton–Raphson iteration to refine the reciprocal square root approximation
produced by pfrsqrt instruction, pfrcpit2 performs the second final step
in the Newton–Raphson iteration to refine the reciprocal approximation or
the reciprocal square root approximation. pfcmpeq, pfcmpge and pfcmpgt

compare the packed floating point values and sets all bits or zeroes all bits of
the correspoding data element in the destination operand according to the
result of comparison, first checks whether values are equal, second checks
whether destination value is greater or equal to source value, third checks
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whether destination value is greater than source value.
prefetch and prefetchw load the line of data from memory that contains

byte specified with the operand into the data cache, prefetchw instruction
should be used when the data in the cache line is expected to be modified,
otherwise the prefetch instruction should be used. The operand should be
an 8–bit memory location.

femms performs a fast clear of MMX state. It has no operands.

2.1.19 The x86-64 long mode instructions

The AMD64 and EM64T architectures (we will use the common name x86–64
for them both) extend the x86 instruction set for the 64–bit processing. While
legacy and compatibility modes use the same set of registers and instructions,
the new long mode extends the x86 operations to 64 bits and introduces
several new registers. You can turn on generating the code for this mode
with the use64 directive.

Each of the general purpose registers is extended to 64 bits and the eight
whole new general purpose registers and also eight new SSE registers are
added. See table 2.4 for the summary of new registers (only the ones that
was not listed in table 1.2). The general purpose registers of smallers sizes
are the low order portions of the larger ones. You can still access the ah,
bh, ch and dh registers in long mode, but you cannot use them in the same
instruction with any of the new registers.

In general any instruction from x86 architecture, which allowed 16–bit or
32–bit operand sizes, in long mode allows also the 64–bit operands. The 64–
bit registers should be used for addressing in long mode, the 32–bit addressing
is also allowed, but it’s not possible to use the addresses based on 16–bit
registers. Below are the samples of new operations possible in long mode on
the example of mov instruction:

mov rax,r8 ; transfer 64-bit general register

mov al,[rbx] ; transfer memory addressed by 64-bit register

The long mode uses also the instruction pointer based addresses, you can
specify it manually with the special RIP register symbol, but such address-
ing is also automatically generated by flat assembler, since there is no 64–bit
absolute addressing in long mode. You can still force the assembler to use
the 32–bit absolute addressing by putting the dword size override for address
inside the square brackets. There is also one exception, where the 64–bit ab-
solute addressing is possible, it’s the mov instruction with one of the operand
being accumulator register, and second being the memory operand. To force
the assembler to use the 64–bit absolute addressing there, use the qword size
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Type General SSE
Bits 8 16 32 64 128

rax

rcx

rdx

rbx

spl rsp

bpl rbp

sil rsi

dil rdi

r8b r8w r8d r8 xmm8

r9b r9w r9d r9 xmm9

r10b r10w r10d r10 xmm10

r11b r11w r11d r11 xmm11

r12b r12w r12d r12 xmm12

r13b r13w r13d r13 xmm13

r14b r14w r14d r14 xmm14

r15b r15w r15d r15 xmm15

Table 2.4: New registers in long mode.

operator for address inside the square brackets. When no size operator is
applied to address, assembler generates the optimal form automatically.

mov [qword 0],rax ; absolute 64-bit addressing

mov [dword 0],r15d ; absolute 32-bit addressing

mov [0],rsi ; automatic RIP-relative addressing

mov [rip+3],sil ; manual RIP-relative addressing

Also as the immediate operands for 64–bit operations only the signed
32–bit values are possible, with the only exception being the mov instruction
with destination operand being 64–bit general purpose register. Trying to
force the 64–bit immediate with any other instruction will cause an error.

If any operation is performed on the 32–bit general registers in long mode,
the upper 32 bits of the 64–bit registers containing them are filled with zeros.
This is unlike the operations on 16–bit or 8–bit portions of those registers,
which preserve the upper bits.

Three new type conversion instructions are available. The cdqe sign
extends the double word in EAX into quad word and stores the result in
RAX register. cqo sign extends the quad word in RAX into double quad
word and stores the extra bits in the RDX register. These instructions have
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no operands. movsxd sign extends the double word source operand, being
either the 32–bit register or memory, into 64–bit destination operand, which
has to be register. No analogous instruction is needed for the zero extension,
since it is done automatically by any operations on 32–bit registers, as noted
in previous paragraph. And the movzx and movsx instructions, conforming
to the general rule, can be used with 64–bit destination operand, allowing
extension of byte or word values into quad words.

All the binary arithmetic and logical instruction are promoted to allow
64–bit operands in long mode. The use of decimal arithmetic instructions in
long mode is prohibited.

The stack operations, like push and pop in long mode default to 64–bit
operands and it’s not possible to use 32–bit operands with them. The pusha

and popa are disallowed in long mode.

The indirect near jumps and calls in long mode default to 64–bit operands
and it’s not possible to use the 32–bit operands with them. On the other
hand, the indirect far jumps and calls allow any operands that were allowed
by the x86 architecture and also 80–bit memory operand is allowed (though
only EM64T seems to implement such variant), with the first eight bytes
defining the offset and two last bytes specifying the selector. The direct far
jumps and calls are not allowed in long mode.

The I/O instructions, in, out, ins and outs are the exceptional instruc-
tions that are not extended to accept quad word operands in long mode. But
all other string operations are, and there are new short forms movsq, cmpsq,
scasq, lodsq and stosq introduced for the variants of string operations for
64–bit string elements. The RSI and RDI registers are used by default to
address the string elements.

The lfs, lgs and lss instructions are extended to accept 80–bit source
memory operand with 64–bit destination register (though only EM64T seems
to implement such variant). The lds and les are disallowed in long mode.

The system instructions like lgdt which required the 48–bit memory
operand, in long mode require the 80–bit memory operand.

The cmpxchg16b is the 64–bit equivalent of cmpxchg8b instruction, it uses
the double quad word memory operand and 64–bit registers to perform the
analoguous operation.

swapgs is the new instruction, which swaps the contents of GS register
and the KernelGSbase model–specific register (MSR address 0C0000102h).

syscall and sysret is the pair of new instructions that provide the
functionality similar to sysenter and sysexit in long mode, where the latter
pair is disallowed.
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2.2 Control directives

This section describes the directives that control the assembly process, they
are processed during the assembly and may cause some blocks of instructions
to be assembled differently or not assembled at all.

2.2.1 Numerical constants

The = directive allows to define the numerical constant. It should be pre-
ceded by the name for the constant and followed by the numerical expression
providing the value. The value of such constants can be a number or an ad-
dress, but – unlike labels – the numerical constants are not allowed to hold
the register–based addresses. Besides this difference, in their basic variant
numerical constants behave very much like labels and you can even forward–
reference them (access their values before they actually get defined).

There is, however, a second variant of numerical constants, which is recog-
nized by assembler when you try to define the constant of name, under which
there already was a numerical constant defined. In such case assembler treats
that constant as an assembly–time variable and allows it to be assigned with
new value, but forbids forward–referencing it (for obvious reasons). Let’s see
both the variant of numerical constants in one example:

dd sum

x = 1

x = x+2

sum = x

Here the x is an assembly–time variable, and every time it is accessed, the
value that was assigned to it the most recently is used. Thus if we tried to
access the x before it gets defined the first time, like if we wrote dd x in place
of the dd sum instruction, it would cause an error. And when it is re–defined
with the x = x+2 directive, the previous value of x is used to calculate the
new one. So when the sum constant gets defined, the x has value of 3, and
this value is assigned to the sum. Since this one is defined only once in source,
it is the standard numerical constant, and can be forward–referenced. So the
dd sum is assembled as dd 3. To read more about how the assembler is able
to resolve this, see section 2.2.6.

The value of numerical constant can be preceded by size operator, which
can ensure that the value will fit in the range for the specified size, and can
affect also how some of the calculations inside the numerical expression are
performed. This example:
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c8 = byte -1

c32 = dword -1

defines two different constants, the first one fits in 8 bits, the second one fits
in 32 bits.

When you need to define constant with the value of address, which may
be register–based (and thus you cannot employ numerical constant for this
purpose), you can use the extended syntax of label directive (already de-
scribed in section 1.2.3), like:

label myaddr at ebp+4

which declares label placed at ebp+4 address. However remember that labels,
unlike numerical constants, cannot become assembly–time variables.

2.2.2 Conditional assembly

if directive causes come block of instructions to be assembled only under
certain condition. It should be followed by logical expression specifying the
condition, instructions in next lines will be assembled only when this condi-
tion is met, otherwise they will be skipped. The optional else if directive
followed with logical expression specifying additional condition begins the
next block of instructions that will be assembled if previous conditions were
not met, and the additional condition is met. The optional else directive
begins the block of instructions that will be assembled if all the conditions
were not met. The end if directive ends the last block of instructions.

You should note that if directive is processed at assembly stage and
therefore it doesn’t affect any preprocessor directives, like the definitions of
symbolic constants and macroinstructions – when the assembler recognizes
the if directive, all the preprocessing has been already finished.

The logical expression consist of logical values and logical operators. The
logical operators are ~ for logical negation, & for logical and, | for logical
or. The negation has the highest priority. Logical value can be a numerical
expression, it will be false if it is equal to zero, otherwise it will be true. Two
numerical expression can be compared using one of the following operators
to make the logical value: = (equal), < (less), > (greater), <= (less or equal),
>= (greater or equal), <> (not equal).

The used operator followed by a symbol name, is the logical value that
checks whether the given symbol is used somewhere (it returns correct result
even if symbol is used only after this check). The defined operator can be
followed by any expression, usually just by a single symbol name; it checks
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whether the given expression contains only symbols that are defined in the
source and accessible from the current position.

The following simple example uses the count constant that should be
defined somewhere in source:

if count>0

mov cx,count

rep movsb

end if

These two assembly instructions will be assembled only if the count constant
is greater than 0. The next sample shows more complex conditional structure:

if count & ~ count mod 4

mov cx,count/4

rep movsd

else if count>4

mov cx,count/4

rep movsd

mov cx,count mod 4

rep movsb

else

mov cx,count

rep movsb

end if

The first block of instructions gets assembled when the count is non zero and
divisible by four, if this condition is not met, the second logical expression,
which follows the else if, is evaluated and if it’s true, the second block of
instructions get assembled, otherwise the last block of instructions, which
follows the line containing only else, is assembled.

There are also operators that allow comparison of values being any chains
of symbols. The eq compares two such values whether they are exactly the
same. The in operator checks whether given value is a member of the list of
values following this operator, the list should be enclosed between < and >

characters, its members should be separated with commas. The symbols are
considered the same when they have the same meaning for the assembler –
for example pword and fword for assembler are the same and thus are not
distinguished by the above operators. In the same way 16 eq 10h is the true
condition, however 16 eq 10+4 is not.

The eqtype operator checks whether the two compared values have the
same structure, and whether the structural elements are of the same type.
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The distinguished types include numerical expressions, individual quoted
strings, floating point numbers, address expressions (the expressions enclosed
in square brackets or preceded by ptr operator), instruction mnemonics, reg-
isters, size operators, jump type and code type operators. And each of the
special characters that act as a separators, like comma or colon, is the sep-
arate type itself. For example, two values, each one consisting of register
name followed by comma and numerical expression, will be regarded as of
the same type, no matter what kind of register and how complicated numer-
ical expression is used; with exception for the quoted strings and floating
point values, which are the special kinds of numerical expressions and are
treated as different types. Thus eax,16 eqtype fs,3+7 condition is true,
but eax,16 eqtype eax,1.6 is false.

2.2.3 Repeating blocks of instructions

times directive repeats one instruction specified number of times. It should
be followed by numerical expression specifying number of repeats and the
instruction to repeat (optionally colon can be used to separate number and
instruction). When special symbol % is used inside the instruction, it is equal
to the number of current repeat. For example times 5 db % will define five
bytes with values 1, 2, 3, 4, 5. Recursive use of times directive is also allowed,
so times 3 times % db % will define six bytes with values 1, 1, 2, 1, 2, 3.

repeat directive repeats the whole block of instructions. It should be
followed by numerical expression specifying number of repeats. Instructions
to repeat are expected in next lines, ended with the end repeat directive,
for example:

repeat 8

mov byte [bx],%

inc bx

end repeat

The generated code will store byte values from one to eight in the memory
addressed by BX register.

Number of repeats can be zero, in that case the instructions are not
assembled at all.

The break directive allows to stop repeating earlier and continue assembly
from the first line after the end repeat. Combined with the if directive it
allows to stop repeating under some special condition, like:

s = x/2

repeat 100
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if x/s = s

break

end if

s = (s+x/s)/2

end repeat

The while directive repeats the block of instructions as long as the con-
dition specified by the logical expression following it is true. The block of
instructions to be repeated should end with the end while directive. Before
each repetition the logical expression is evaluated and when its value is false,
the assembly is continued starting from the first line after the end while.
Also in this case the % symbol holds the number of current repeat. The
break directive can be used to stop this kind of loop in the same way as with
repeat directive. The previous sample can be rewritten to use the while

instead of repeat this way:

s = x/2

while x/s <> s

s = (s+x/s)/2

if % = 100

break

end if

end while

The blocks defined with if, repeat and while can be nested in any order,
however they should be closed in the same order in which they were started.
The break directive always stops processing the block that was started last
with either the repeat or while directive.

2.2.4 Addressing spaces

org directive sets address at which the following code is expected to appear
in memory. It should be followed by numerical expression specifying the
address. This directive begins the new addressing space, the following code
itself is not moved in any way, but all the labels defined within it and the
value of $ symbol are affected as if it was put at the given address. However
it’s the responsibility of programmer to put the code at correct address at
run–time.

The load directive allows to define constant with a binary value loaded
from the already assembled code. This directive should be followed by the
name of the constant, then optionally size operator, then from operator and a
numerical expression specifying a valid address in current addressing space.
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The size operator has unusual meaning in this case – it states how many
bytes (up to 8) have to be loaded to form the binary value of constant. If no
size operator is specified, one byte is loaded (thus value is in range from 0 to
255). The loaded data cannot exceed current offset.

The store directive can modify the already generated code by replac-
ing some of the previously generated data with the value defined by given
numerical expression, which follow. The expression can be preceded by the
optional size operator to specify how large value the expression defines, and
therefore how much bytes will be stored, if there is no size operator, the size
of one byte is assumed. Then the at operator and the numerical expression
defining the valid address in current addressing code space, at which the
given value have to be stored should follow. This is a directive for advanced
appliances and should be used carefully.

Both load and store directives are limited to operate on places in current
addressing space. The $$ symbol is always equal to the base address of
current addressing space, and the $ symbol is the address of current position
in that addressing space, therefore these two values define limits of the area,
where load and store can operate.

Combining the load and store directives allows to do things like encoding
some of the already generated code. For example to encode the whole code
generated in current addressing space you can use such block of directives:

repeat $-$$

load a byte from $$+%-1

store byte a xor c at $$+%-1

end repeat

and each byte of code will be xored with the value defined by c constant.
virtual defines virtual data at specified address. This data won’t be

included in the output file, but labels defined there can be used in other
parts of source. This directive can be followed by at operator and the nu-
merical expression specifying the address for virtual data, otherwise is uses
current address, the same as virtual at $. Instructions defining data are
expected in next lines, ended with end virtual directive. The block of vir-
tual instructions itself is an independent addressing space, after it’s ended,
the context of previous addressing space is restored.

The virtual directive can be used to create union of some variables, for
example:

GDTR dp ?

virtual at GDTR

GDT_limit dw ?
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GDT_address dd ?

end virtual

It defines two labels for parts of the 48–bit variable at GDTR address.

It can be also used to define labels for some structures addressed by a
register, for example:

virtual at bx

LDT_limit dw ?

LDT_address dd ?

end virtual

With such definition instruction mov ax,[LDT_limit] will be assembled to
mov ax,[bx].

Declaring defined data values or instructions inside the virtual block
would also be useful, because the load directive can be used to load the
values from the virtually generated code into a constants. This directive
should be used after the code it loads but before the virtual block ends,
because it can only load the values from the same addressing space. For
example:

virtual at 0

xor eax,eax

and edx,eax

load zeroq dword from 0

end virtual

The above piece of code will define the zeroq constant containing four bytes
of the machine code of the instructions defined inside the virtual block. This
method can be also used to load some binary value from external file. For
example this code:

virtual at 0

file ’a.txt’:10h,1

load char from 0

end virtual

loads the single byte from offset 10h in file a.txt into the char constant.

Any of the section directives described in 2.4 also begins a new address-
ing space.
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2.2.5 Other directives

align directive aligns code or data to the specified boundary. It should be
followed by a numerical expression specifying the number of bytes, to the
multiply of which the current address has to be aligned. The boundary value
has to be the power of two.

The align directive fills the bytes that had to be skipped to perform the
alignment with the nop instructions and at the same time marks this area
as uninitialized data, so if it is placed among other uninitialized data that
wouldn’t take space in the output file, the alignment bytes will act the same
way. If you need to fill the alignment area with some other values, you can
combine align with virtual to get the size of alignment needed and then
create the alignment yourself, like:

virtual

align 16

a = $ - $$

end virtual

db a dup 0

The a constant is defined to be the difference between address after alignment
and address of the virtual block (see previous section), so it is equal to the
size of needed alignment space.

display directive displays the message at the assembly time. It should
be followed by the quoted strings or byte values, separated with commas. It
can be used to display values of some constants, for example:

bits = 16

display ’Current offset is 0x’

repeat bits/4

d = ’0’ + $ shr (bits-%*4) and 0Fh

if d > ’9’

d = d + ’A’-’9’-1

end if

display d

end repeat

display 13,10

This block of directives calculates the four hexadecimal digits of 16–bit value
and converts them into characters for displaying. Note that this won’t work
if the adresses in current addressing space are relocatable (as it might happen
with PE or object output formats), since only absolute values can be used
this way. The absolute value may be obtained by calculating the relative
address, like $-$$, or rva $ in case of PE format.
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2.2.6 Multiple passes

Because the assembler allows to reference some of the labels or constants
before they get actually defined, it has to predict the values of such labels
and if there is even a suspicion that prediction failed in at least one case,
it does one more pass, assembling the whole source, this time doing better
prediction based on the values the labels got in the previous pass.

The changing values of labels can cause some instructions to have en-
codings of different length, and this can cause the change in values of labels
again. And since the labels and constants can also be used inside the expres-
sions that affect the behavior of control directives, the whole block of source
can be processed completely differently during the new pass. Thus the as-
sembler does more and more passes, each time trying to do better predictions
to approach the final solution, when all the values get predicted correctly.
It uses various method for predicting the values, which has been chosen to
allow finding in a few passes the solution of possibly smallest length for the
most of the programs.

Some of the errors, like the values not fitting in required boundaries, are
not signaled during those intermediate passes, since it may happen that when
some of the values are predicted better, these errors will disappear. However
if assembler meets some illegal syntax construction or unknown instruction,
it always stops immediately. Also defining some label more than once causes
such error, because it makes the predictions groundless.

Only the messages created with the display directive during the last
performed pass get actually displayed. In case when the assembly has been
stopped due to an error, these messages may reflect the predicted values that
are not yet resolved correctly.

The solution may sometimes not exist and in such cases the assembler
will never manage to make correct predictions – for this reason there is a
limit for a number of passes, and when assembler reaches this limit, it stops
and displays the message that it is not able to generate the correct output.
Consider the following example:

if ~ defined alpha

alpha:

end if

The defined operator gives the true value when the expression following it
could be calculated in this place, what in this case means that the alpha label
is defined somewhere. But the above block causes this label to be defined
only when the value given by defined operator is false, what leads to an
antynomy and makes it impossible to resolve such code. When processing
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the if directive assembler has to predict whether the alpha label will be
defined somewhere (it wouldn’t have to predict only if the label was already
defined earlier in this pass), and whatever the prediction is, the opposite
always happens. Thus the assembly will fail, unless the alpha label is defined
somewhere in source preceding the above block of instructions – in such case,
as it was already noted, the prediction is not needed and the block will just
get skipped.

The above sample might have been written as a try to define the label
only when it was not yet defined. It fails, because the defined operator does
check whether the label is defined anywhere, and this includes the definition
inside this conditionally processed block. However adding some additional
condition may make it possible to get it resolved:

if ~ defined alpha | defined @f

alpha:

@@:

end if

The @f is always the same label as the nearest @@ symbol in the source fol-
lowing it, so the above sample would mean the same if any unique name was
used instead of the anonymous label. When alpha is not defined in any other
place in source, the only possible solution is when this block gets defined,
and this time this doesn’t lead to the antynomy, because of the anonymous
label which makes this block self–establishing. To better understand this,
look at the blocks that has nothing more than this self-establishing:

if defined @f

@@:

end if

This is an example of source that may have more than one solution, as both
cases when this block gets processed or not are equally correct. Which one
of those two solutions we get depends on the algorithm on the assembler, in
case of flat assembler – on the algorithm of predictions. Back to the previous
sample, when alpha is not defined anywhere else, the condition for if block
cannot be false, so we are left with only one possible solution, and we can
hope the assembler will arrive at it. On the other hand, when alpha is
defined in some other place, we’ve got two possible solutions again, but one
of them causes alpha to be defined twice, and such an error causes assembler
to abort the assembly immediately, as this is the kind of error that deeply
disturbs the process of resolving. So we can get such source either correctly
resolved or causing an error, and what we get may depend on the internal
choices made by the assembler.
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However there are some facts about such choices that are certain. When
assembler has to check whether the given symbol is defined and it was already
defined in the current pass, no prediction is needed – it was already noted
above. And when the given symbol has been defined never before, including
all the already finished passes, the assembler predicts it to be not defined.
Knowing this, we can expect that the simple self–establishing block shown
above will not be assembled at all and that the previous sample will resolve
correctly when alpha is defined somewhere before our conditional block,
while it will itself define alpha when it’s not already defined earlier, thus
potentially causing the error because of double definition if the alpha is also
defined somewhere later.

The used operator may be expected to behave in a similar manner in
analogous cases, however any other kinds of predictions my not be so simple
and you should never rely on them this way.

2.3 Preprocessor directives

All preprocessor directives are processed before the main assembly process,
and therefore are not affected by the control directives. At this time also all
comments are stripped out.

2.3.1 Including source files

include directive includes the specified source file at the position where it
is used. It should be followed by the quoted name of file that should be
included, for example:

include ’macros.inc’

The whole included file is preprocessed before preprocessing the lines next to
the line containing the include directive. There are no limits to the number
of included files as long as they fit in memory.

The quoted path can contain environment variables enclosed within %

characters, they will be replaced with their values inside the path, both the
\ and / characters are allowed as a path separators. If no absolute path
is given, the file is first searched for in the directory containing file which
included it and when it’s not found there, in the directory containing the
main source file (the one specified in command line). These rules concern
also paths given with the file directive.
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2.3.2 Symbolic constants

The symbolic constants are different from the numerical constants, before
the assembly process they are replaced with their values everywhere in source
lines after their definitions, and anything can become their values.

The definition of symbolic constant consists of name of the constant fol-
lowed by the equ directive. Everything that follows this directive will become
the value of constant. If the value of symbolic constant contains other sym-
bolic constants, they are replaced with their values before assigning this value
to the new constant. For example:

d equ dword

NULL equ d 0

d equ edx

After these three definitions the value of NULL constant is dword 0 and
the value of d is edx. So, for example, push NULL will be assembled as
push dword 0 and push d will be assembled as push edx. And if then the
following line was put:

d equ d,eax

the d constant would get the new value of edx,eax. This way the growing
lists of symbols can be defined.

restore directive allows to get back previous value of redefined symbolic
constant. It should be followed by one more names of symbolic constants,
separated with commas. So restore d after the above definitions will give
d constant back the value edx, the second one will restore it to value dword,
and one more will revert d to original meaning as if no such constant was
defined. If there was no constant defined of given name, restore won’t cause
an error, it will be just ignored.

Symbolic constant can be used to adjust the syntax of assembler to per-
sonal preferences. For example the following set of definitions provides the
handy shortcuts for all the size operators:

b equ byte

w equ word

d equ dword

p equ pword

f equ fword

q equ qword

t equ tword

x equ dqword
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Because symbolic constant may also have an empty value, it can be used
to allow the syntax with offset word before any address value:

offset equ

After this definition mov ax,offset char will be valid construction for copy-
ing the offset of char variable into ax register, because offset is replaced
with an empty value, and therefore ignored.

The define directive followed by the name of constant and then the value,
is the alternative way of defining symbolic constant. The only difference
between define and equ is that define assigns the value as it is, it does not
replace the symbolic constants with their values inside it.

Symbolic constants can also be defined with the fix directive, which has
the same syntax as equ, but defines constants of high priority – they are
replaced with their symbolic values even before processing the preprocessor
directives and macroinstructions, the only exception is fix directive itself,
which has the highest possible priority, so it allows redefinition of constants
defined this way.

The fix directive can be used for syntax adjustments related to directives
of preprocessor, what cannot be done with equ directive. For example:

incl fix include

defines a short name for include directive, while the similar definition done
with equ directive wouldn’t give such result, as standard symbolic constants
are replaced with their values after searching the line for preprocessor direc-
tives.

2.3.3 Macroinstructions

macro directive allows you to define your own complex instructions, called
macroinstructions, using which can greatly simplify the process of program-
ming. In its simplest form it’s similar to symbolic constant definition. For
example the following definition defines a shortcut for the test al,0xFF

instruction:

macro tst {test al,0xFF}

After the macro directive there is a name of macroinstruction and then its
contents enclosed between the { and } characters. You can use tst instruc-
tion anywhere after this definition and it will be assembled as test al,0xFF.
Defining symbolic constant tst of that value would give the similar result,
but the difference is that the name of macroinstruction is recognized only
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as an instruction mnemonic. Also, macroinstructions are replaced with cor-
responding code even before the symbolic constants are replaced with their
values. So if you define macroinstruction and symbolic constant of the same
name, and use this name as an instruction mnemonic, it will be replaced
with the contents of macroinstruction, but it will be replaced with value if
symbolic constant if used somewhere inside the operands.

The definition of macroinstruction can consist of many lines, because {

and } characters don’t have to be in the same line as macro directive. For
example:

macro stos0

{

xor al,al

stosb

}

The macroinstruction stos0 will be replaced with these two assembly in-
structions anywhere it’s used.

Like instructions which needs some number of operands, the macroin-
struction can be defined to need some number of arguments separated with
commas. The names of needed argument should follow the name of macroin-
struction in the line of macro directive and should be separated with commas
if there is more than one. Anywhere one of these names occurs in the contents
of macroinstruction, it will be replaced with corresponding value, provided
when the macroinstruction is used. Here is an example of a macroinstruction
that will do data alignment for binary output format:

macro align value { rb (value-1)-($+value-1) mod value }

When the align 4 instruction is found after this macroinstruction is defined,
it will be replaced with contents of this macroinstruction, and the value will
there become 4, so the result will be rb (4-1)-($+4-1) mod 4.

If a macroinstruction is defined that uses an instruction with the same
name inside its definition, the previous meaning of this name is used. Useful
redefinition of macroinstructions can be done in that way, for example:

macro mov op1,op2

{

if op1 in <ds,es,fs,gs,ss> & op2 in <cs,ds,es,fs,gs,ss>

push op2

pop op1

else

mov op1,op2
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end if

}

This macroinstruction extends the syntax of mov instruction, allowing both
operands to be segment registers. For example mov ds,es will be assembled
as push es and pop ds. In all other cases the standard mov instruction will
be used. The syntax of this mov can be extended further by defining next
macroinstruction of that name, which will use the previous macroinstruction:

macro mov op1,op2,op3

{

if op3 eq

mov op1,op2

else

mov op1,op2

mov op2,op3

end if

}

It allows mov instruction to have three operands, but it can still have two
operands only, because when macroinstruction is given less arguments than
it needs, the rest of arguments will have empty values. When three operands
are given, this macroinstruction will become two macroinstructions of the
previous definition, so mov es,ds,dx will be assembled as push ds, pop es

and mov ds,dx.
By placing the * after the name of argument you can mark the argument

as required – preprocessor won’t allow it to have an empty value. For example
the above macroinstruction could be declared as macro mov op1*,op2*,op3

to make sure that first two arguments will always have to be given some non
empty values.

When it’s needed to provide macroinstruction with argument that con-
tains some commas, such argument should be enclosed between < and >

characters. If it contains more than one < character, the same number of >
should be used to tell that the value of argument ends.

purge directive allows removing the last definition of specified macroin-
struction. It should be followed by one or more names of macroinstructions,
separated with commas. If such macroinstruction has not been defined, you
won’t get any error. For example after having the syntax of mov extended
with the macroinstructions defined above, you can disable syntax with three
operands back by using purge mov directive. Next purge mov will disable
also syntax for two operands being segment registers, and all the next such
directives will do nothing.
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If after the macro directive you enclose some group of arguments’ names
in square brackets, it will allow giving more values for this group of arguments
when using that macroinstruction. Any more argument given after the last
argument of such group will begin the new group and will become the first
argument of it. That’s why after closing the square bracket no more argument
names can follow. The contents of macroinstruction will be processed for each
such group of arguments separately. The simplest example is to enclose one
argument name in square brackets:

macro stoschar [char]

{

mov al,char

stosb

}

This macroinstruction accepts unlimited number of arguments, and each
one will be processed into these two instructions separately. For example
stoschar 1,2,3 will be assembled as the following instructions:

mov al,1

stosb

mov al,2

stosb

mov al,3

stosb

There are some special directives available only inside the definitions of
macroinstructions. local directive defines local names, which will be re-
placed with unique values each time the macroinstruction is used. It should
be followed by names separated with commas. If the name given as parameter
to local directive begins with a dot or two dots, the unique labels generated
by each evaluation of macroinstruction will have the same properties. This
directive is usually needed for the constants or labels that macroinstruction
defines and uses internally. For example:

macro movstr

{

local move

move:

lodsb

stosb

test al,al

jnz move

}
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Each time this macroinstruction is used, move will become other unique name
in its instructions, so you won’t get an error you normally get when some
label is defined more than once.

forward, reverse and common directives divide macroinstruction into
blocks, each one processed after the processing of previous is finished. They
differ in behavior only if macroinstruction allows multiple groups of argu-
ments. Block of instructions that follows forward directive is processed for
each group of arguments, from first to last – exactly like the default block
(not preceded by any of these directives). Block that follows reverse direc-
tive is processed for each group of argument in reverse order – from last to
first. Block that follows common directive is processed only once, commonly
for all groups of arguments. Local name defined in one of the blocks is avail-
able in all the following blocks when processing the same group of arguments
as when it was defined, and when it is defined in common block it is avail-
able in all the following blocks not depending on which group of arguments
is processed.

Here is an example of macroinstruction that will create the table of ad-
dresses to strings followed by these strings:

macro strtbl name,[string]

{

common

label name dword

forward

local label

dd label

forward

label db string,0

}

First argument given to this macroinstruction will become the label for table
of addresses, next arguments should be the strings. First block is processed
only once and defines the label, second block for each string declares its local
name and defines the table entry holding the address to that string. Third
block defines the data of each string with the corresponding label.

The directive starting the block in macroinstruction can be followed by
the first instruction of this block in the same line, like in the following exam-
ple:

macro stdcall proc,[arg]

{

reverse push arg
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common call proc

}

This macroinstruction can be used for calling the procedures using STD-
CALL convention, arguments are pushed on stack in the reverse order. For
example stdcall foo,1,2,3 will be assembled as:

push 3

push 2

push 1

call foo

If some name inside macroinstruction has multiple values (it is either one
of the arguments enclosed in square brackets or local name defined in the
block following forward or reverse directive) and is used in block following
the common directive, it will be replaced with all of its values, separated with
commas. For example the following macroinstruction will pass all of the
additional arguments to the previously defined stdcall macroinstruction:

macro invoke proc,[arg]

{ common stdcall [proc],arg }

It can be used to call indirectly (by the pointer stored in memory) the pro-
cedure using STDCALL convention.

Inside macroinstruction also special operator # can be used. This operator
causes two names to be concatenated into one name. It can be useful, because
it’s done after the arguments and local names are replaced with their values.
The following macroinstruction will generate the conditional jump according
to the cond argument:

macro jif op1,cond,op2,label

{

cmp op1,op2

j#cond label

}

For example jif ax,ae,10h,exit will be assembled as cmp ax,10h and
jae exit instructions.

The # operator can be also used to concatenate two quoted strings into
one. Also conversion of name into a quoted string is possible, with the ‘

operator, which likewise can be used inside the macroinstruction. It converts
the name that follows it into a quoted string – but note, that when it is
followed by a macro argument which is being replaced with value containing
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more than one symbol, only the first of them will be converted, as the ‘

operator converts only one symbol that immediately follows it. Here’s an
example of utilizing those two features:

macro label name

{

label name

if ~ used name

display ‘name # " is defined but not used.",13,10

end if

}

When label defined with such macro is not used in the source, macro will
warn you with the message, informing to which label it applies.

To make macroinstruction behaving differently when some of the argu-
ments are of some special type, for example a quoted strings, you can use
eqtype comparison operator. Here’s an example of utilizing it to distinguish
a quoted string from an other argument.

macro message arg

{

if arg eqtype ""

local str

jmp @f

str db arg,0Dh,0Ah,24h

@@:

mov dx,str

else

mov dx,arg

end if

mov ah,9

int 21h

}

The above macro is designed for displaying messages in DOS programs.
When the argument of this macro is some number, label, or variable, the
string from that address is displayed, but when the argument is a quoted
string, the created code will display that string followed by the carriage re-
turn and line feed.

It is also possible to put a declaration of macroinstruction inside another
macroinstruction, so one macro can define another, but there is a problem
with such definitions caused by the fact, that } character cannot occur inside
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the macroinstruction, as it always means the end of definition. To overcome
this problem, the escaping of symbols inside macroinstruction can be used.
This is done by placing one or more backslashes in front of any other sym-
bol (even the special character). Preprocessor sees such sequence as a single
symbol, but each time it meets such symbol during the macroinstruction pro-
cessing, it cuts the backslash character from the front of it. For example \}

is treated as single symbol, but during processing of the macroinstruction it
becomes the } symbol. This allows to put one definition of macroinstruction
inside another:

macro ext instr

{

macro instr op1,op2,op3

\{

if op3 eq

instr op1,op2

else

instr op1,op2

instr op2,op3

end if

\}

}

ext add

ext sub

The macro ext is defined correctly, but when it is used, the \{ and \} become
the { and } symbols. So when the ext add is processed, the contents of macro
becomes valid definition of a macroinstruction and this way the add macro
becomes defined. In the same way ext sub defines the sub macro. The use
of \{ symbol wasn’t really necessary here, but is done this way to make the
definition more clear.

If some directives specific to macroinstructions, like local or common are
needed inside some macro embedded this way, they can be escaped in the
same way. Escaping the symbol with more than one backslash is also allowed,
which allows multiple levels of nesting the macroinstruction definitions.

The another technique for defining one macroinstruction by another is
to use the fix directive, which becomes useful when some macroinstruction
only begins the definition of another one, without closing it. For example:

macro tmacro [params]

{
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common macro params {

}

MACRO fix tmacro

ENDM fix }

defines an alternative syntax for defining macroinstructions, which looks like:

MACRO stoschar char

mov al,char

stosb

ENDM

Note that symbol that has such customized definition must be defined with
fix directive, because only the prioritized symbolic constants are processed
before the preprocessor looks for the } character while defining the macro.
This might be a problem if one needed to perform some additional tasks
one the end of such definition, but there is one more feature which helps
in such cases. Namely it is possible to put any directive, instruction or
macroinstruction just after the } character that ends the macroinstruction
and it will be processed in the same way as if it was put in the next line.

2.3.4 Structures

struc directive is a special variant of macro directive that is used to define
data structures. Macroinstruction defined using the struc directive must
be preceded by a label (like the data definition directive) when it’s used.
This label will be also attached at the beginning of every name starting with
dot in the contents of macroinstruction. The macroinstruction defined using
the struc directive can have the same name as some other macroinstruction
defined using the macro directive, structure macroinstruction won’t prevent
the standard macroinstruction being processed when there is no label before
it and vice versa. All the rules and features concerning standard macroin-
structions apply to structure macroinstructions.

Here is the sample of structure macroinstruction:

struc point x,y

{

.x dw x

.y dw y

}



80 CHAPTER 2. INSTRUCTION SET

For example my point 7,11 will define structure labeled my, consisting of
two variables: my.x with value 7 and my.y with value 11.

If somewhere inside the definition of structure the name consisting of a
single dot it found, it is replaced by the name of the label for the given
instance of structure and this label will not be defined automatically in such
case, allowing to completely customize the definition. The following example
utilizes this feature to extend the data definition directive db with ability to
calculate the size of defined data:

struc db [data]

{

common

. db data

.size = $ - .

}

With such definition msg db ’Hello!’,13,10 will define also msg.size con-
stant, equal to the size of defined data in bytes.

Defining data structures addressed by registers or absolute values should
be done using the virtual directive with structure macroinstruction (see
2.2.5).

restruc directive removes the last definition of the structure, just like
purge does with macroinstructions and restore with symbolic constants.
It also has the same syntax – should be followed by one or more names of
structure macroinstructions, separated with commas.

2.3.5 Repeating macroinstructions

The rept directive is a special kind of macroinstruction, which makes given
amount of duplicates of the block enclosed with braces. The basic syntax
is rept directive followed by number (it cannot be an expression, since pre-
processor doesn’t do calculations, if you need repetitions based on values
calculated by assembler, use one of the code repeating directives that are
processed by assembler, see 2.2.3), and then block of source enclosed be-
tween the { and } characters. The simplest example:

rept 5 { in al,dx }

will make five duplicates of the in al,dx line. The block of instructions is
defined in the same way as for the standard macroinstruction and any special
operators and directives which can be used only inside macroinstructions
are also allowed here. When the given count is zero, the block is simply
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skipped, as if you defined macroinstruction but never used it. The number
of repetitions can be followed by the name of counter symbol, which will get
replaced symbolically with the number of duplicate currently generated. So
this:

rept 3 counter

{

byte#counter db counter

}

will generate lines:

byte1 db 1

byte2 db 2

byte3 db 3

The repetition mechanism applied to rept blocks is the same as the one used
to process multiple groups of arguments for macroinstructions, so directives
like forward, common and reverse can be used in their usual meaning. Thus
such macroinstruction:

rept 7 num { reverse display ‘num }

will display digits from 7 to 1 as text. The local directive behaves in the
same way as inside macroinstruction with multiple groups of arguments, so:

rept 21

{

local label

label: loop label

}

will generate unique label for each duplicate.
The counter symbol by default counts from 1, but you can declare different

base value by placing the number preceded by colon immediately after the
name of counter. For example:

rept 8 n:0 { pxor xmm#n,xmm#n }

will generate code which will clear the contents of eight SSE registers. You
can define multiple counters separated with commas, and each one can have
different base.

The irp directive iterates the single argument through the given list of
parameters. The syntax is irp followed by the argument name, then the
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comma and then the list of parameters. The parameters are specified in the
same way like in the invocation of standard macroinstruction, so they have
to be separated with commas and each one can be enclosed with the < and
> characters. Also the name of argument may be followed by * to mark that
it cannot get an empty value. Such block:

irp value, 2,3,5

{ db value }

will generate lines:

db 2

db 3

db 5

The irps directive iterates through the given list of symbols, it should be
followed by the argument name, then the comma and then the sequence of
any symbols. Each symbol in this sequence, no matter whether it is the name
symbol, symbol character or quoted string, becomes an argument value for
one iteration. If there are no symbols following the comma, no iteration is
done at all. This example:

irps reg, al bx ecx

{ xor reg,reg }

will generate lines:

xor al,al

xor bx,bx

xor ecx,ecx

The blocks defined by the irp and irps directives are also processed in the
same way as any macroinstructions, so operators and directives specific to
macroinstructions may be freely used also in this case.

2.3.6 Conditional preprocessing

match directive causes some block of source to be preprocessed and passed
to assembler only when the given sequence of symbols matches the specified
pattern. The pattern comes first, ended with comma, then the symbols that
have to be matched with the pattern, and finally the block of source, enclosed
within braces as macroinstruction.

There are the few rules for building the expression for matching, first
is that any of symbol characters and any quoted string should be matched
exactly as is. In this example:
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match +,+ { include ’first.inc’ }

match +,- { include ’second.inc’ }

the first file will get included, since + after comma matches the + in pattern,
and the second file won’t be included, since there is no match.

To match any other symbol literally, it has to be preceded by = character
in the pattern. Also to match the = character itself, or the comma, the ==

and =, constructions have to be used. For example the =a== pattern will
match the a= sequence.

If some name symbol is placed in the pattern, it matches any sequence
consisting of at least one symbol and then this name is replaced with the
matched sequence everywhere inside the following block, analogously to the
parameters of macroinstruction. For instance:

match a-b, 0-7

{ dw a,b-a }

will generate the dw 0,7-0 instruction. Each name is always matched with
as few symbols as possible, leaving the rest for the following ones, so in this
case:

match a b, 1+2+3 { db a }

the a name will match the 1 symbol, leaving the +2+3 sequence to be matched
with b. But in this case:

match a b, 1 { db a }

there will be nothing left for b to match, so the block won’t get processed at
all.

The block of source defined by match is processed in the same way as any
macroinstruction, so any operators specific to macroinstructions can be used
also in this case.

What makes ”match” directive more useful is the fact, that it replaces
the symbolic constants with their values in the matched sequence of symbols
(that is everywhere after comma up to the beginning of the source block)
before performing the match. Thanks to this it can be used for example to
process some block of source under the condition that some symbolic constant
has the given value, like:

match =TRUE, DEBUG { include ’debug.inc’ }

which will include the file only when the symbolic constant DEBUG was defined
with value TRUE.
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2.3.7 Order of processing

When combining various features of the preprocessor, it’s important to know
the order in which they are processed. As it was already noted, the highest
priority has the fix directive and the replacements defined with it. This is
done completely before doing any other preprocessing, therefore this piece of
source:

V fix {

macro empty

V

V fix }

V

becomes a valid definition of an empty macroinstruction. It can be inter-
preted that the fix directive and prioritized symbolic constants are processed
in a separate stage, and all other preprocessing is done after on the resulting
source.

The standard preprocessing that comes after, on each line begins with
recognition of the first symbol. It begins with checking for the preprocessor
directives, and when none of them is detected, preprocessor checks whether
the first symbol is macroinstruction. If no macroinstruction is found, it moves
to the second symbol of line, and again begins with checking for directives,
which in this case is only the equ directive, as this is the only one that occurs
as the second symbol in line. If there’s no directive, the second symbol is
checked for the case of structure macroinstruction and when none of those
checks gives the positive result, the symbolic constants are replaced with
their values and such line is passed to the assembler.

To see it on the example, assume that there is defined the macroinstruc-
tion called foo and the structure macroinstruction called bar. Those lines:

foo equ

foo bar

would be then both interpreted as invocations of macroinstruction foo, since
the meaning of the first symbol overrides the meaning of second one.

The macroinstructions generate the new lines from their definition blocks,
replacing the parameters with their values and then processing the symbol
escaping and # and ‘ operators. The conversion operator has the higher pri-
ority than concatenation and if any of them operates on the escaped symbol,
the escaping is cancelled before finishing the operation. After this is com-
pleted, the newly generated line goes through the standard preprocessing, as
described above.
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Though the symbolic constants are usually only replaced in the lines,
where no preprocessor directives nor macroinstructions has been found, there
are some special cases where those replacements are performed in the parts
of lines containing directives. First one is the definition of symbolic constant,
where the replacements are done everywhere after the equ keyword and the
resulting value is then assigned to the new constant (see 2.3.2). The second
such case is the match directive, where the replacements are done in the
symbols following comma before matching them with pattern. These features
can be used for example to maintain the lists, like this set of definitions:

list equ

macro append item

{

match any, list \{ list equ list,item \}

match , list \{ list equ item \}

}

The list constant is here initialized with empty value, and the append

macroinstruction can be used to add the new items into this list, separating
them with commas. The first match in this macroinstruction occurs only
when the value of list is not empty (see 2.3.6), in such case the new value for
the list is the previous one with the comma and the new item appended at
the end. The second match happens only when the list is still empty, and in
such case the list is defined to contain just the new item. So starting with
the empty list, the append 1 would define list equ 1 and the append 2

following it would define list equ 1,2. One might then need to use this list
as the parameters to some macroinstruction. But it cannot be done directly
– if foo is the macroinstruction, then foo list would just pass the list

symbol as a parameter to macro, since symbolic constants are not unrolled
at this stage. For this purpose again match directive comes in handy:

match params, list { foo params }

The value of list, if it’s not empty, matches the params keyword, which is
then replaced with matched value when generating the new lines defined by
the block enclosed with braces. So if the list had value 1,2, the above line
would generate the line containing foo 1,2, which would then go through
the standard preprocessing.

There is one more special case – when preprocessor goes to checking the
second symbol in the line and it happens to be the colon character (what is
then interpreted by assembler as definition of a label), it stops in this place
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and finishes the preprocessing of the first symbol (so if it’s the symbolic
constant it gets unrolled) and if it still appears to be the label, it performs
the standard preprocessing starting from the place after the label. This
allows to place preprocessor directives and macroinstructions after the labels,
analogously to the instructions and directives processed by assembler, like:

start: include ’start.inc’

However if the label becomes broken during preprocessing (for example when
it is the symbolic constant with empty value), only replacing of the symbolic
constants is continued for the rest of line.

It should be remembered, that the jobs performed by preprocessor are
the preliminary operations on the texts symbols, that are done in a simple
single pass before the main process of assembly. The text that is the result of
preprocessing is passed to assembler, and it then does its multiple passes on
it. Thus the control directives, which are recognized and processed only by
the assembler – as they are dependent on the numerical values that may even
vary between passes – are not recognized in any way by the preprocessor and
have no effect on the preprocessing. Consider this example source:

if 0

a = 1

b equ 2

end if

dd b

When it is preprocessed, they only directive that is recognized by the pre-
processor is the equ, which defines symbolic constant b, so later in the source
the b symbol is replaced with the value 2. Except for this replacement, the
other lines are passes unchanged to the assembler. So after preprocessing the
above source becomes:

if 0

a = 1

end if

dd 2

Now when assembler processes it, the condition for the if is false, and the
a constant doesn’t get defined. However symbolic constant b was processed
normally, even though its definition was put just next to the one of a. So
because of the possible confusion you should be very careful every times when
mixing the features of preprocessor and assembler – always try to imagine
what your source will become after the preprocessing, and thus what the
assembler will see and do its multiple passes on.



2.4. FORMATTER DIRECTIVES 87

2.4 Formatter directives

These directives are actually also a kind of control directives, with the pur-
pose of controlling the format of generated code.

format directive followed by the format identifier allows to select the
output format. This directive should be put at the beginning of the source.
Default output format is a flat binary file, it can also be selected by using
format binary directive.

use16 and use32 directives force the assembler to generate 16–bit or
32–bit code, omitting the default setting for selected output format. use64

enables generating the code for the long mode of x86–64 processors.

Below are described different output formats with the directives specific
to these formats.

2.4.1 MZ executable

To select the MZ output format, use format MZ directive. The default code
setting for this format is 16–bit.

segment directive defines a new segment, it should be followed by label,
which value will be the number of defined segment, optionally use16 or use32
word can follow to specify whether code in this segment should be 16–bit or
32–bit. The origin of segment is aligned to paragraph (16 bytes). All the
labels defined then will have values relative to the beginning of this segment.

entry directive sets the entry point for MZ executable, it should be fol-
lowed by the far address (name of segment, colon and the offset inside seg-
ment) of desired entry point.

stack directive sets up the stack for MZ executable. It can be followed by
numerical expression specifying the size of stack to be created automatically
or by the far address of initial stack frame when you want to set up the stack
manually. When no stack is defined, the stack of default size 4096 bytes will
be created.

heap directive should be followed by a 16–bit value defining maximum
size of additional heap in paragraphs (this is heap in addition to stack and
undefined data). Use heap 0 to always allocate only memory program really
needs. Default size of heap is 65535.

2.4.2 Portable Executable

To select the Portable Executable output format, use format PE directive,
it can be followed by additional format settings: use console, GUI or native
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operator selects the target subsystem (floating point value specifying subsys-
tem version can follow), DLL marks the output file as a dynamic link library.
Then can follow the at operator and the numerical expression specifying the
base of PE image and then optionally on operator followed by the quoted
string containing file name selects custom MZ stub for PE program (when
specified file is not a MZ executable, it is treated as a flat binary executable
file and converted into MZ format). The default code setting for this format
is 32–bit. The example of fully featured PE format declaration:

format PE GUI 4.0 DLL at 7000000h on ’stub.exe’

To create PE file for the x86–64 architecture, use PE64 keyword instead
of PE in the format declaration, in such case the long mode code is generated
by default.

section directive defines a new section, it should be followed by quoted
string defining the name of section, then one or more section flags can fol-
low. Available flags are: code, data, readable, writeable, executable,
shareable, discardable, notpageable. The origin of section is aligned to
page (4096 bytes). Example declaration of PE section:

section ’.text’ code readable executable

Among with flags also on of special PE data identifiers can be specified to
mark the whole section as a special data, possible identifiers are export,
import, resource and fixups. If the section is marked to contain fixups,
they are generated automatically and no more data needs to be defined in
this section. Also resource data can be generated automatically from the
resource file, it can be achieved by writing the from operator and quoted
file name after the resource identifier. Below are the examples of sections
containing some special PE data:

section ’.reloc’ data discardable fixups

section ’.rsrc’ data readable resource from ’my.res’

entry directive sets the entry point for Portable Executable, the value of
entry point should follow.

stack directive sets up the size of stack for Portable Executable, value of
stack reserve size should follow, optionally value of stack commit separated
with comma can follow. When stack is not defined, it’s set by default to size
of 4096 bytes.

heap directive chooses the size of heap for Portable Executable, value of
heap reserve size should follow, optionally value of heap commit separated
with comma can follow. When no heap is defined, it is set by default to size
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of 65536 bytes, when size of heap commit is unspecified, it is by default set
to zero.

data directive begins the definition of special PE data, it should be fol-
lowed by one of the data identifiers (export, import, resource or fixups)
or by the number of data entry in PE header. The data should be defined
in next lines, ended with end data directive. When fixups data definition
is chosen, they are generated automatically and no more data needs to be
defined there. The same applies to the resource data when the resource

identifier is followed by from operator and quoted file name – in such case
data is taken from the given resource file.

The rva operator can be used inside the numerical expressions to obtain
the RVA of the item addressed by the value it is applied to.

2.4.3 Common Object File Format

To select Common Object File Format, use format COFF or format MS COFF

directive whether you want to create simple or Microsoft COFF file. The
default code setting for this format is 32–bit. To create the file in Microsoft’s
COFF format for the x86–64 architecture, use format MS64 COFF setting, in
such case long mode code is generated by default.

section directive defines a new section, it should be followed by quoted
string defining the name of section, then one or more section flags can fol-
low. Section flags available for both COFF variants are code and data, while
readable, writeable, executable, shareable, discardable, notpageable,
linkremove and linkinfo are flags available only with Microsoft COFF vari-
ant.

By default section is aligned to double word (four bytes), in case of Mi-
crosoft COFF variant other alignment can be specified by providing the
align operator followed by alignment value (any power of two up to 8192)
among the section flags.

extrn directive defines the external symbol, it should be followed by the
name of symbol and optionally the size operator specifying the size of data
labeled by this symbol. The name of symbol can be also preceded by quoted
string containing name of the external symbol and the as operator. Some
example declarations of external symbols:

extrn exit

extrn ’__imp__MessageBoxA@16’ as MessageBox:dword

public directive declares the existing symbol as public, it should be fol-
lowed by the name of symbol, optionally it can be followed by the as operator
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and the quoted string containing name under which symbol should be avail-
able as public. Some examples of public symbols declarations:

public main

public start as ’_start’

2.4.4 Executable and Linkable Format

To select ELF output format, use format ELF directive. The default code
setting for this format is 32–bit. To create ELF file for the x86–64 archi-
tecture, use format ELF64 directive, in such case the long mode code is
generated by default.

section directive defines a new section, it should be followed by quoted
string defining the name of section, then can follow one or both of the
executable and writeable flags, optionally also align operator followed
by the number specifying the alignment of section (it has to be the power of
two), if no alignment is specified, the default value is used, which is 4 or 8,
depending on which format variant has been chosen.

extrn and public directives have the same meaning and syntax as when
the COFF output format is selected (described in previous section).

The operator can be used also in the case of this format (however not
when target architecture is x86–64), it converts the address into the offset
relative to the GOT table, so it may be useful to create position-independent
code. There’s also a special plt operator, which allows to call the external
functions through the Procedure Linkage Table. You can even create an alias
for external function that will make it always be called through PLT, with
the code like:

extrn ’printf’ as _printf

printf = PLT _printf

To create executable file, follow the format choice directive with the
executable keyword. It allows to use entry directive followed by the value
to set as entry point of program. On the other hand it makes extrn and
public directives unavailable, and instead of section there should be the
segment directive used, followed only by one or more segment permission
flags. The origin of segment is aligned to page (4096 bytes), and available
flags for are: readable, writeable and executable.
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Windows programming

With the Windows version of flat assembler comes the package of standard
includes designed to help in writing the programs for Windows environment.

The includes package contains the headers for 32–bit Windows program-
ming in the root folder and the specialized includes in the subfolders. In
general, the Win32 headers include the required specialized files for you,
though sometimes you might prefer to include some of the macroinstruction
packages yourself (since few of them are not included by some or even all of
the headers).

There are six Win32 headers you can choose from, with names starting
with win32 followed by either a letter a for using the ASCII encoding, or
a letter w for the WideChar encoding. The win32a.inc and win32w.inc

are the basic headers, the win32ax.inc and win32wx.inc are the extended
headers, they provide more advanced macroinstructions, those extensions
will be discussed separately. Finally the win32axp.inc and win32wxp.inc

are the same extended headers with enabled feature of checking the count of
parameters in procedure calls.

You can include the headers any way you prefer, by providing the full
path or using the custom environment variable, but the simplest method is
to define the INCLUDE environment variable properly pointing to the directory
containing headers and then include them just like:

include ’win32a.inc’

It’s important to note that all macroinstructions, as opposed to internal
directives of flat assembler, are case sensitive and the lower case is used for
the most of them. If you’d prefer to use the other case than default, you
should do the appropriate adjustments with fix directive.
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3.1 Basic headers

The basic headers win32a.inc and win32w.inc include the declarations of
Win32 equates and structures and provide the standard set of macroinstruc-
tions.

3.1.1 Structures

All headers enable the struct macroinstruction, which allows to define struc-
tures in a way more similar to other assemblers than the struc directive. The
definition of structure should be started with struct macroinstruction fol-
lowed by the name, and ended with ends macroinstruction. In lines between
only data definition directives are allowed, with labels being the pure names
for the fields of structure:

struct POINT

x dd ?

y dd ?

ends

With such definition this line:

point1 POINT

will declare the point1 structure with the point1.x and point1.y fields,
giving them the default values – the same ones as provided in the definition
of structure (in this case the defaults are both uninitialized values). But
declaration of structure also accepts the parameters, in the same count as
the number of fields in the structure, and those parameters, when specified,
override the default values for fields. For example:

point2 POINT 10,20

initializes the point2.x field with value 10, and the point2.y with value 20.
The struct macro not only enables to declare the structures of given type,

but also defines labels for offsets of fields inside the structure and constants
for sized of every field and the whole structure. For example the above defi-
nition of POINT structure defines the POINT.x and POINT.y labels to be the
offsets of fields inside the structure, and sizeof.POINT.x, sizeof.POINT.y
and sizeof.POINT as sizes of the corresponding fields and of the whole struc-
ture. The offset labels may be used for accessing the structures addressed
indirectly, like:

mov eax,[ebx+POINT.x]
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when the ebx register contains the pointer to POINT structure. Note that
field size checking will be performed with such accessing as well.

The structures itself are also allowed inside the structure definitions, so
the structures may have some other structures as a fields:

struct LINE

start POINT

end POINT

ends

When no default values for substructure fields are specified, as in this exam-
ple, the defaults from the definition of the type of substructure apply.

Since value for each field is a single parameter in the declaration of the
structure, to initialize the substructures with custom values the parameters
for each substructure must be grouped into a single parameter for the struc-
ture:

line1 LINE <0,0>,<100,100>

This declaration initializes each of the line1.start.x and line1.start.y

fields with 0, and each of the line1.end.x and line1.end.y with 100.
When the size of data defined by some value passed to the declaration

structure is smaller than the size of corresponding field, it is padded to that
size with undefined bytes (and when it is larger, the error happens). For
example:

struct FOO

data db 256 dup (?)

ends

some FOO <"ABC",0>

fills the first four bytes of some.data with defined values and reserves the
rest.

Inside the structures also unions and unnamed substructures can be de-
fined. The definition of union should start with union and end with ends,
like in this example:

struct BAR

field_1 dd ?

union

field_2 dd ?

field_2b db ?

ends

ends
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Each of the fields defined inside union has the same offset and they share
the same memory. Only the first field of union is initialized with given
value, the values for the rest of fields are ignored (however if one of the
other fields requires more memory than the first one, the union is padded
to the required size with undefined bytes). The whole union is initialized by
the single parameter given in structure declaration, and this parameter gives
value to the first field of union.

The unnamed substructure is defined in a similar way to the union, only
starts with the struct line instead of union, like:

struct WBB

word dw ?

struct

byte1 db ?

byte2 db ?

ends

ends

Such substructure only takes one parameter in the declaration of whole struc-
ture to define its values, and this parameter can itself be the group of param-
eters defining each field of the substructure. So the above type of structure
may get declared like:

my WBB 1,<2,3>

The fields inside unions and unnamed substructures are accessed just as if
the were directly the fields of the parent structure. For example with above
declaration my.byte1 and my.byte2 are correct labels for the substructure
fields.

The substructures and unions can be nested with no limits for the nesting
depth:

struct LINE

union

start POINT

struct

x1 dd ?

y1 dd ?

ends

ends

union

end POINT

struct
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x2 dd ?

y2 dd ?

ends

ends

ends

The definition of structure may also be based on some of the already
defined structure types and it inherits all the fields from that structure, for
example:

struct CPOINT POINT

color dd ?

ends

defines the same structure as:

struct CPOINT

x dd ?

y dd ?

color dd ?

ends

All headers define the CHAR data type, which can be used to define char-
acter strings in the data structures.

3.1.2 Imports

The import macroinstructions help to build the import data for PE file (usu-
ally put in the separate section). There are two macroinstructions for this
purpose. The first one is called library, must be placed directly in the be-
ginning of the import data and it defines from what libraries the functions
will be imported. It should be followed by any amount of the pairs of pa-
rameters, each pair being the label for the table of imports from the given
library, and the quoted string defining the name of the library. For example:

library kernel32,’KERNEL32.DLL’,\

user32,’USER32.DLL’

declares to import from the two libraries. For each of libraries, the table of
imports must be then declared somewhere inside the import data. This is
done with import macroinstruction, which needs first parameter to define the
label for the table (the same as declared earlier to the library macro), and
then the pairs of parameters each containing the label for imported pointer
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and the quoted string defining the name of function exactly as exported by
library. For example the above library declaration may be completed with
following import declarations:

import kernel32,\

ExitProcess,’ExitProcess’

import user32,\

MessageBeep,’MessageBeep’,\

MessageBox,’MessageBoxA’

The labels defined by first parameters in each pair passed to the import

macro address the double word pointers, which after loading the PE are
filled with the addresses to exported procedures.

Instead of quoted string for the name of procedure to import, the number
may be given to define import by ordinal, like:

import custom,\

ByName,’FunctionName’,\

ByOrdinal,17

The import macros optimize the import data, so only imports for func-
tions that are used somewhere in program are placed in the import tables,
and if some import table would be empty this way, the whole library is not
referenced at all. For this reason it’s handy to have the complete import table
for each library – the package contains such tables for some of the standard
libraries, they are stored in the APIA and APIW subdirectories and import
the ASCII and WideChar variants of the API functions. Each file contains
one import table, with lowercase label the same as the name of the file. So
the complete tables for importing from the KERNEL32.DLL and USER32.DLL

libraries can be defined this way (assuming your INCLUDE environment vari-
able points to the directory containing the includes package):

library kernel32,’KERNEL32.DLL’,\

user32,’USER32.DLL’

include ’apia\kernel32.inc’

include ’apiw\user32.inc’

3.1.3 Procedures

There are four macroinstructions for calling procedures with parameters
passed on stack. The stdcall calls directly the procedure specified by the
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first argument using the STDCALL calling convention. The rest of argu-
ments passed to macro define the parameters to procedure and are stored on
the stack in reverse order. The invoke macro does the same, however it calls
the procedure indirectly, through the pointer labelled by the first argument.
Thus invoke can be used to call the procedures through pointers defined in
the import tables. This line:

invoke MessageBox,0,szText,szCaption,MB_OK

is equivalent to:

stdcall [MessageBox],0,szText,szCaption,MB_OK

and they both generate this code:

push MB_OK

push szCaption

push szText

push 0

call [MessageBox]

The ccall and cinvoke are analogous to the stdcall and invoke, but
they should be used to call the procedures that use the C calling convention,
where the stack frame has to be restored by the caller.

To define the procedure that uses the stack for parameters and local
variables, you should use the proc macroinstruction. In its simplest form it
has to be followed by the name for the procedure and then names for the all
the parameters it takes, like:

proc WindowProc,hwnd,wmsg,wparam,lparam

The comma between the name of procedure and the first parameter is op-
tional. The procedure instructions should follow in the next lines, ended
with the endp macroinstruction. The stack frame is set up automatically
on the entry to procedure, the EBP register is used as a base to access the
parameters, so you should avoid using this register for other purposes. The
names specified for the parameters are used to define EBP-based labels, which
you can use to access the parameters as regular variables. For example the
mov eax,[hwnd] instruction inside the procedure defined as in above sample,
is equivalent to mov eax,[ebp+8]. The scope of those labels is limited to
the procedure, so you may use the same names for other purposes outside
the given procedure.

Since any parameters are pushed on the stack as double words when
calling such procedures, the labels for parameters are defined to mark the
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double word data by default, however you can you specify the sizes for the
parameters if you want, by following the name of parameter with colon and
the size operator. The previous sample can be rewritten this way, which is
again equivalent:

proc WindowProc,hwnd:DWORD,wmsg:DWORD,\

wparam:DWORD,lparam:DWORD

If you specify a size smaller than double word, the given label applies to the
smaller portion of the whole double word stored on stack. If you you specify
a larger size, like far pointer of quad word, the two double word parameters
are defined to hold this value, but are labelled as one variable.

The name of procedure can be also followed by either the stdcall or
c keyword to define the calling convention it uses. When no such type is
specified, the default is used, which is equivalent to STDCALL. Then also
the uses keyword may follow, and after it the list of registers (separated only
with spaces) that will be automatically stored on entry to procedure and
restored on exit. In this case the comma after the list of registers and before
the first parameter is required. So the fully featured procedure statement
might look like this:

proc WindowProc stdcall uses ebx esi edi,\

hwnd:DWORD,wmsg:DWORD,wparam:DWORD,lparam:DWORD

To declare the local variable you can use the local macroinstruction,
followed by one or more declarations separated with commas, each one con-
sisting of the name for variable followed by colon and the type of variable –
either one of the standard types (must be upper case) or the name of data
structure. For example:

local hDC:DWORD,rc:RECT

To declare a local array, you can follow the name of variable by the size of
array enclosed in square brackets, like:

local str[256]:BYTE

The other way to define the local variables is to declare them inside the block
started with ”locals” macroinstruction and ended with ”endl”, in this case
they can be defined just like regular data. This declaration is the equivalent
of the earlier sample:

locals

hDC dd ?

rc RECT

endl
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The local variables can be declared anywhere inside the procedure, with the
only limitation that they have to be declared before they are used. The scope
of labels for the variables defined as local is limited to inside the procedure,
you can use the same names for other purposes outside the procedure. If you
give some initialized values to the variables declared as local, the macroin-
struction generates the instructions that will initialize these variables with
the given values and puts these instruction at the same position in procedure,
where the declaration is placed.

The ret placed anywhere inside the procedure, generates the complete
code needed to correctly exit the procedure, restoring the stack frame and
the registers used by procedure. If you need to generate the raw return
instruction, use the retn mnemonic, or follow the ret with the number
parameter, what also causes it to be interpreted as single instruction.

To recapitulate, the complete definition of procedure may look like this:

proc WindowProc uses ebx esi edi,hwnd,wmsg,wparam,lparam

local hDC:DWORD,rc:RECT

; the instructions

ret

endp

3.1.4 Exports

The export macroinstruction constructs the export data for the PE file
(it should be either placed in the section marked as export, or within the
data export block. The first argument should be quoted string defining the
name of library file, and the rest should be any number of pairs of arguments,
first in each pair being the name of procedure defined somewhere inside the
source, and the second being the quoted string containing the name under
which this procedure should be exported by the library. This sample:

export ’MYLIB.DLL’,\

MyStart,’Start’,\

MyStop,’Stop’

defines the table exporting two functions, which are defined under the names
MyStart and MyStop in the sources, but will be exported by library under the
shorter names. The macroinstruction take care of the alphabetical sorting of
the table, which is required by PE format.
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3.1.5 Component Object Model

The interface macro allows to declare the interface of the COM object
type, the first parameter is the name of interface, and then the consecutive
names of the methods should follow, like in this example:

interface ITaskBarList,\

QueryInterface,\

AddRef,\

Release,\

HrInit,\

AddTab,\

DeleteTab,\

ActivateTab,\

SetActiveAlt

The comcall macro may be then used to call the method of the given
object. The first parameter to this macro should be the handle to object, the
second one should be name of COM interface implemented by this object,
and then the name of method and parameter to this method. For example:

comcall ebx,ITaskBarList,ActivateTab,[hwnd]

uses the contents of EBX register as a handle to COM object with the
ITaskBarList interface, and calls the ActivateTab method of this object
with the [hwnd] parameter.

You can also use the name of COM interface in the same way as the name
of data structure, to define the variable that will hold the handle to object
of given type:

ShellTaskBar ITaskBarList

The above line defines the double word variable, in which the handle to
COM object can be stored. After storing there the handle to an object,
its methods can be called with the cominvk. This macro needs only the
name of the variable with assigned interface and the name of method as first
two parameters, and then parameters for the method. So the ActivateTab

method of object whose handle is stored in the ShellTaskBar variable as
defined above can be called this way:

cominvk ShellTaskBar,ActivateTab,[hwnd]

which does the same as:

comcall [ShellTaskBar],ITaskBarList,ActivateTab,[hwnd]
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3.1.6 Resources

There are two ways to create resources, one is to include the external resource
file created with some other program, and the other one is to create resource
section manually. The latter method, though doesn’t need any additional
program to be involved, is more laborious, but the standard headers provide
the assistance – the set of elementary macroinstructions that serve as bricks
to compose the resource section.

The directory macroinstruction must be placed directly in the beginning
of manually built resource data and it defines what types of resources it
contains. It should be followed by the pairs of values, the first one in each
pair being the identifier of the type of resource, and the second one the label
of subdirectory of the resources of given type. It may look like this:

directory RT_MENU,menus,\

RT_ICON,icons,\

RT_GROUP_ICON,group_icons

The subdirectories can be placed anywhere in the resource area after the
main directory, and they have to be defined with the resource macroin-
struction, which requires first parameter to be the label of the subdirectory
(corresponding to the entry in main directory) followed by the trios of param-
eters – in each such entry the first parameter defines the identifier of resource
(this value is freely chosen by the programmer and is then used to access the
given resource from the program), the second specifies the language and the
third one is the label of resource. Standard equates should be used to create
language identifiers. For example the subdirectory of menus may be defined
this way:

resource menus,\

1,LANG_ENGLISH+SUBLANG_DEFAULT,main_menu,\

2,LANG_ENGLISH+SUBLANG_DEFAULT,other_menu

If the resource is of kind for which the language doesn’t matter, the identifier
LANG_NEUTRAL should be used. To define the resources of various types there
are specialized macroinstructions, which should be placed inside the resource
area.

The bitmaps are the resources with RT_BITMAP type identifier. To define
the bitmap resource use the bitmap macroinstruction with the first parameter
being the label of resource (corresponding to the entry in the subdirectory
of bitmaps) and the second being the quoted string containing the path to
the bitmap file, like:
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bitmap program_logo,’logo.bmp’

The are two resource types related to icons, the RT_GROUP_ICON is the
type for the resource, which has to be linked to one or more resources of
RT_ICON type, each one containing single image. This allows to declare im-
ages of different sizes and color depths under the common resource identifier.
This identifier, given to the resource of RT_GROUP_ICON type may be then
passed to the LoadIcon function, and it will choose the image of suitable di-
mensions from the group. To define the icon, use the icon macroinstruction,
with first parameter being the label of RT_GROUP_ICON resource, followed by
the pairs of parameters declaring the images. First parameter in each pair
should be the label of RT_ICON resource, and the second one the quoted string
containing the path to the icon file. In the simplest variant, when group of
icon contains just one image, it will look like:

icon main_icon,icon_data,’main.ico’

where the main_icon is the label for entry in resource subdirectory for
RT_GROUP_ICON type, and the icon_data is the label for entry of RT_ICON
type.

The cursors are defined in very similar way to icons, this time with the
RT_GROUP_CURSOR and RT_CURSOR types and the cursor macro, which takes
parameters analogous to those taken by icon macro. So the definition of
cursor may look like this:

cursor my_cursor,cursor_data,’my.cur’

The menus have the RT_MENU type of resource and are defined with the
menu macroinstruction followed by few others defining the items inside the
menu. The menu itself takes only one parameter – the label of resource.
The menuitem defines the item in the menu, it takes up to five parameters,
but only two are required – the first one is the quoted string containing the
text for the item, and the second one is the identifier value (which is the
value that will be returned when user selects the given item from the menu).
The menuseparator defines a separator in the menu and doesn’t require any
parameters.

The optional third parameter of menuitem specifies the menu resource
flags. There are two such flags available – MFR_END is the flag for the last
item in the given menu, and the MFR_POPUP marks that the given item is
the submenu, and the following items will be items composing that submenu
until the item with MFR_END flag is found. The MFR_END flag can be also
given as the parameter to the menuseparator and is the only parameter this
macroinstruction can take. For the menu definition to be complete, every
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submenu must be closed by the item with MFR_END flag, and the whole menu
must also be closed this way. Here is an example of complete definition of
the menu:

menu main_menu

menuitem ’&File’,100,MFR_POPUP

menuitem ’&New’,101

menuseparator

menuitem ’E&xit’,109,MFR_END

menuitem ’&Help’,900,MFR_POPUP + MFR_END

menuitem ’&About...’,901,MFR_END

The optional fourth parameter of menuitem specifies the state flags for
the given item, these flags are the same as the ones used by API functions,
like MFS_CHECKED or MFS_DISABLED. Similarly, the fifth parameter can specify
the type flags. For example this will define item checked with a radio–button
mark:

menuitem ’Selection’,102, ,MFS_CHECKED,MFT_RADIOCHECK

The dialog boxes have the RT_DIALOG type of resource and are defined
with the dialog macroinstruction followed by any number of items defined
with dialogitem ended with the enddialog.

The dialog can take up to eleven parameters, first seven being required.
First parameter, as usual, specifies the label of resource, second is the quoted
string containing the title of the dialog box, the next four parameters specify
the horizontal and vertical coordinates, the width and the height of the dialog
box window respectively. The seventh parameter specifies the style flags for
the dialog box window, the optional eighth one specifies the extended style
flags. The ninth parameter can specify the menu for window – it should be
the identifier of menu resource, the same as one specified in the subdirectory
of resources with RT_MENU type. Finally the tenth and eleventh parameter
can be used to define the font for the dialog box – first of them should be
the quoted string containing the name of font, and the latter one the number
defining the size of font. When these optional parameters are not specified,
the default MS Sans Serif of size 8 is used.

This example shows the dialog macroinstruction with all the parameters
except for the menu (which is left with blank value), the optional ones are
in the second line:

dialog about,’About’,50,50,200,100,WS_CAPTION+WS_SYSMENU,\

WS_EX_TOPMOST, ,’Times New Roman’,10
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The dialogitem has eight required parameters and one optional. First
parameter should be the quoted string containing the class name for the
item. Second parameter can be either the quoted string containing text for
the item, or resource identifier in case when the contents of item has to be
defined by some additional resource (like the item of STATIC class with the
SS_BITMAP style). The third parameter is the identifier for the item, used
to identify the item by the API functions. Next four parameters specify the
horizontal, vertical coordinates, the width and height of the item respectively.
The eighth parameter specifies the style for the item, and the optional ninth
specifies the extended style flags. An example dialog item definition:

dialogitem ’BUTTON’,’OK’,IDOK,8,8,45,15,WS_VISIBLE+WS_TABSTOP

And an example of static item containing bitmap, assuming that there exists
a bitmap resource of identifier 7:

dialogitem ’STATIC’,7,0,10,50,50,20,WS_VISIBLE+SS_BITMAP

The definition of dialog resource can contain any amount of items or none
at all, and it should be always ended with enddialog macroinstruction.

The resources of type RT_ACCELERATOR are created with accelerator

macroinstruction. After first parameter traditionally being the label of re-
source, there should follow the trios of parameters – the accelerator flags
followed by the virtual key code or ASCII character and the identifier value
(which is like the identifier of the menu item). A simple accelerator definition
may look like this:

accelerator main_keys,\

FVIRTKEY+FNOINVERT,VK_F1,901,\

FVIRTKEY+FNOINVERT,VK_F10,109

The version information is the resource of type RT_VERSION and is created
with the versioninfo macroinstruction. After the label of the resource, the
second parameter specifies the operating system of PE file (usually it should
be VOS__WINDOWS32), third parameter the type of file (the most common
are VFT_APP for program and VFT_DLL for library), fourth the subtype (usu-
ally VFT2_UNKNOWN), fifth the language identifier, sixth the code page and
then the quoted string parameters, being the pairs of property name and
corresponding value. The simplest version information can be defined like:

versioninfo vinfo,VOS__WINDOWS32,VFT_APP,VFT2_UNKNOWN,\

LANG_ENGLISH+SUBLANG_DEFAULT,0,\

’FileDescription’,’Description of program’,\
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’LegalCopyright’,’Copyright et cetera’,\

’FileVersion’,’1.0’,\

’ProductVersion’,’1.0’

Other kinds of resources may be defined with resdata macroinstruction,
which takes only one parameter – the label of resource, and can be followed
by any instructions defining the data, ended with endres macroinstruction,
like:

resdata manifest

file ’manifest.xml’

endres

3.1.7 Text encoding

The resource macroinstructions use the du directive to define any Unicode
strings inside resources – since this directive simply zero extends the char-
acters to the 16–bit values, for the strings containing some non–ASCII char-
acters, the du may need to be redefined. For some of the encodings the
macroinstructions redefining the du to generate the Unicode texts properly
are provided in the ENCODING subdirectory. For example if the source text is
encoded with Windows 1250 code page, such line should be put somewhere
in the beginning of the source:

include ’encoding\win1250.inc’

3.2 Extended headers

The extended headers win32ax.inc and win32wx.inc provide all the func-
tionality of base headers and include a few more features involving more com-
plex macroinstructions. Also if no PE format is declared before including the
extended headers, the headers declare it automatically. The win32axp.inc

and win32wxp.inc are the variants of extended headers, that additionally
perform checking the count of parameters to procedure calls.

3.2.1 Procedure parameters

With the extended headers the macroinstructions for calling procedures allow
more types of parameters than just the double word values as with basic
headers. First of all, when the quoted string is passes as a parameter to
procedure, it is used to define string data placed among the code, and passes
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to procedure the double word pointer to this string. This allows to easily
define the strings that don’t have to be re-used, just in the line calling the
procedure that requires pointers to those strings, like:

invoke MessageBox,HWND_DESKTOP,"Message","Caption",MB_OK

If the parameter is the group containing some values separated with commas,
it is treated in the same way as simple quoted string parameter.

If the parameter is preceded by the addr word, it means that this value
is a double word address and this address should be passed to procedure,
even if it cannot be done directly – like in the case of local variables, which
have addresses relative to EBP register, in such case the EDX register is used
temporarily to calculate the value of address and pass it to the procedure.
For example:

invoke RegisterClass,addr wc

in case when the wc is the local variable with address ebp-100h, will generate
this sequence of instructions:

lea edx,[ebp-100h]

push edx

call [RegisterClass]

However when the given address is not relative to any register, it is stored
directly.

If the parameter is preceded by the word double, it is treated as 64–bit
value and passed to the procedure as two 32–bit parameters. For example:

invoke glColor3d,double 1.0,double 0.1,double 0.1

will pass the three 64–bit parameters as six double words to procedure. If
the parameter following double is the memory operand, it should not have
size operator, the double already works as the size override.

Finally, the calls to procedures can be nested, that is call to one procedure
may be used as the parameter to another. In such case the value returned in
EAX by the nested procedure is passed as the parameter to the procedure
which it is nested in. A sample of such nesting:

invoke MessageBox,<invoke GetTopWindow,[hwnd]>,\

"Message","Caption",MB_OK

There are no limits for the depth of nesting the procedure calls.
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3.2.2 Structuring the source

The extended headers enable some macroinstructions that help with easy
structuring the program. The .data and .code are just the shortcuts to the
declarations of sections for data and for the code. The .end macroinstruction
should be put at the end of program, with one parameter specifying the entry
point of program, and it also automatically generates the import section using
all the standard import tables.

The .if macroinstruction generates a piece of code that checks for some
simple condition at the execution time, and depending on the result continues
execution of following block or skips it. The block should be ended with
.endif, but earlier also .elseif macroinstruction might be used to begin
the code that will be executed under some additional condition, when the
previous were not met, and the .else as the last before .endif to begin the
block that will be executed when all the conditions were false.

The condition can be specified by using comparison operator – one of the
=, <, >, <=, >=, and <> – between the two values, first of which must be either
register or memory operand. The values are compared as unsigned ones. If
you provide only single value as a condition, it will be tested to be zero, and
the condition will be true only if it’s not. For example:

.if eax

ret

.endif

generates the instructions, which skip over the ret when the EAX is zero.
There are also some special symbols recognized as conditions: the ZERO?

is true when the ZF flag is set, in the same way the CARRY?, SIGN?, OVERFLOW?
and PARITY? correspond to the state of CF, SF, OF and PF flags.

The simple conditions like above can be composed into complex condi-
tional expressions using the &, | operators for conjunction and alternative,
the ~ operator for negation, and parenthesis. For example:

.if eax<=100 & ( ecx | edx )

inc ebx

.endif

will generate the compare and jump instructions that will cause the given
block to get executed only when EAX is below or equal 100 and at the same
time at least one of the ECX and EDX is not zero.

The .while macroinstruction generates the instructions that will repeat
executing the given block (ended with .endw macroinstruction) as long as
the condition is true. The condition should follow the .while and can be
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specified in the same way as for the .if. The pair of .repeat and .until

macroinstructions define the block that will be repeatedly executed until the
given condition will be met – this time the condition should follow the .until
macroinstruction, placed at the end of block, like:

.repeat

add ecx,2

.until ecx>100
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